AIR PROTECTION BRANCH 2016 Air Quality Report

ENVIRONMENTAL PROTECTION DIVISION

©2016 Ambient Air Surveillance Report Last updated: 11/1/17

Informational Publication

This document is published annually by the Ambient Monitoring Program, in the Air Protection Branch of the Georgia Department of Natural Resources, Environmental Protection Division.

DISCLAIMER: Any reference to specific brand names is not an endorsement of that brand by the Georgia Environmental Protection Division.

ENVIRONMENTAL PROTECTION DIVISION

Air Protection Branch Ambient Monitoring Program

4244 International Parkway Suite 120 | Atlanta, GA 30354 Web: <u>http://amp.georgiaair.org</u> Phone: 404-363-7000 | 404-363-7100

Contents

Introduction	5
Air Quality in Georgia : 2016	6
Air Monitoring FAQs	7
Ambient Monitoring Website	
Community Involvement	
Voluntary Emissions Reductions Programs	
Emissions Trends in Georgia	
Georgia's Ambient Air Monitoring Sites	
Criteria Pollutants	
Carbon Monoxide	
Oxides of Nitrogen	
Sulfur Dioxide	
Ozone	
Lead	
Particulate Matter	
Air Quality Index	
Photochemical Monitoring	
Carbonyls	
Air Toxics Monitoring	
Black Carbon	
Risk Assessment	
Meteorological Report	
Quality Assurance/Quality Control	
2016 Ambient Monitoring Network Table	
Risk Assessment Screening Values	
Meteorological Instruments Used in 2016	
Pollutant Concentrations	

Page intentionally left blank

Introduction

EPD Mission

The Environmental Protection Division (EPD) protects and restores Georgia's environment. We take the lead in ensuring clean air, water, and land. With our partners, we pursue a sustainable environment that provides a foundation for a vibrant economy and healthy communities.

Who We Are

- This report is prepared by the Ambient Monitoring Program (AMP), a program of the Air Protection Branch of the Georgia Environmental Protection Division (EPD), the State's lead environmental agency and a Division of the Georgia Department of Natural Resources. Clean Air
- The Air Protection Branch ensures clean air in Georgia in support of Georgia EPD's . mission.
- The environmental professionals (scientists, meteorologists, and engineers) who make • this report possible make sure Georgia produces air quality data that is accurate, complete, and readily available for public use.
- The Air Protection Branch has six programs:
 - 1. Ambient Monitoring
 - 2. Mobile and Area Sources
 - 3. Planning and Support
 - 4. Radioactive Materials
 - 5. Stationary Source Compliance
 - 6. Stationary Source Permitting

What We Do

- Monitor air quality in Georgia
- Forecast air quality for public use
- Develop plans to maintain or attain the National Ambient . Air Quality Standards (NAAQS)
- Issue permits to regulated stationary sources (industrial facilities and power plants)
- Enforce all state and federal requirements through compliance activities (inspections)
- Oversee required federal emission testing on cars •

5

Air Quality in Georgia: 2016

The Ambient Monitoring Program of the Georgia Environmental Protection Division's Air Protection Branch has been monitoring air quality in the State of Georgia for more than forty years. During that time, the list of monitored compounds has grown to more than 200 pollutants at 42 sites in 31 counties across the state. This monitoring is performed to protect public health and environmental quality. The resulting data is used for a broad range of regulatory and research purposes, as well as to inform the public.

This report includes monitoring data from 2016 and shows that the air quality in Georgia has steadily improved over the last few decades.

A lot has changed in 40 years of air quality monitoring.

How are we doing as a state?

Photo courtesy of http://blog.cleanenergy.org/2010/07/09/epa-proposes-new-air-quality-rules/

http://www.nationsonline.org/oneworld/map/google map Atlanta.htm

Between 1990 and 2014, total emissions of the six principal air pollutants dropped by 58 percent, while

Air Monitoring FAQs

Where are the monitors located?

Over 100 air samplers (called monitors) are located throughout Georgia that measure for nearly 200 air pollutants. These pollutants can be gaseous such as ground-level ozone, or can be very fine particles such as particulate matter 2.5 (PM_{2.5}), also known as particle pollution.

How are air samples collected?

There are two types of collection methods depending on the pollutant and the monitor:

- **Continuous** The air pollutant is measured continuously and the data is automatically recorded at a centralized location into a database.
- Non-Continuous A canister or filter is used to collect the air pollutant over a period of time (8-hr, 24-hr). A technician collects the canister or filters over a specified amount of time and takes them to an approved laboratory for analysis.

How do we know the air quality data is accurate?

Both the continuous and non-continuous data are screened for errors by validation specialists. When the data is certified as valid, it can be reported to the public and used to compare to the National Ambient Air Quality Standards, and to previous years' data for trend information. The validated data is also used by scientists and policy makers.

- Validated data is used to prepare publications such as the Annual Reports and EPD's Annual Network Plan.
- Non-Validated data includes hourly data from continuous monitors published as the Air Quality Index (AQI) on the Georgia Air Monitoring website (<u>http://amp.georgiaair.org</u>) and AirNow, a national air quality database.

What is the Air Quality Index (AQI)?

The Air Quality Index, or AQI, is a color coded indicator of what the air quality is like taking into consideration measurements of multiple pollutants including ozone, particulate matter, sulfur dioxide, nitrogen dioxide, and carbon monoxide.

What is the air quality like where I am?

Real time, hourly, air quality data for your area is available on the Georgia Air Monitoring Website at <u>http://amp.georgiaair.org</u>. Georgia's air quality data is also uploaded to a national air quality information database called AirNow (<u>www.airnow.gov</u>) and available to the public in real time.

Why don't we have monitoring everywhere?

The number of monitoring sites and their location can vary from year to year depending on the availability of long-term space allocation, regulatory needs, and funding. The cost associated with establishing and running a monitoring station is significant. It involves maintaining equipment and collecting

samples to produce quality data for public use. EPD does not own land at any of its ambient air monitoring stations, we are always either a guest or a leaseholder. Each monitoring station must meet federal siting criteria set by EPA and be approved by the landowner. Before deciding to establish a new monitoring station, EPD has to consider regulatory needs, funding limitations, and finding an appropriate location where a long-term arrangement is possible. If EPD determines a change is needed, EPA has to review and approve the changes before the changes can happen.

Good	Air quality is considered satisfactory, and air pollution poses little or no risk
Moderate	Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people who are unusually sensitive to air pollution.
Unhealthy for Sensitive Groups	Members of sensitive groups may experience health effects. The general public is not likely to be affected.
Unhealthy	Everyone may begin to experience health effects; members of sensitive groups may experience more serious health effects.
Very Unhealthy	Health warnings of emergency conditions. The entire population is more likely to be affected.
Hazardous	Health alert: everyone may experience more serious health effects

Air Quality FAQs

What are National Ambient Air Quality Standards (NAAQS)?

Under the <u>Clean Air Act</u>, EPA is required to set National Ambient Air Quality Standards (40 CFR part 50) for air pollutants that may be harmful to public health and the environment. There are two types of National Ambient Air Quality Standards. *Primary standards* protect public health, including protecting populations considered "sensitive," such as children, the elderly, and asthmatics. *Secondary standards* protect public welfare, including protection against damage to animals, crops, vegetation, and buildings, and decreased visibility in national parks and protected areas.

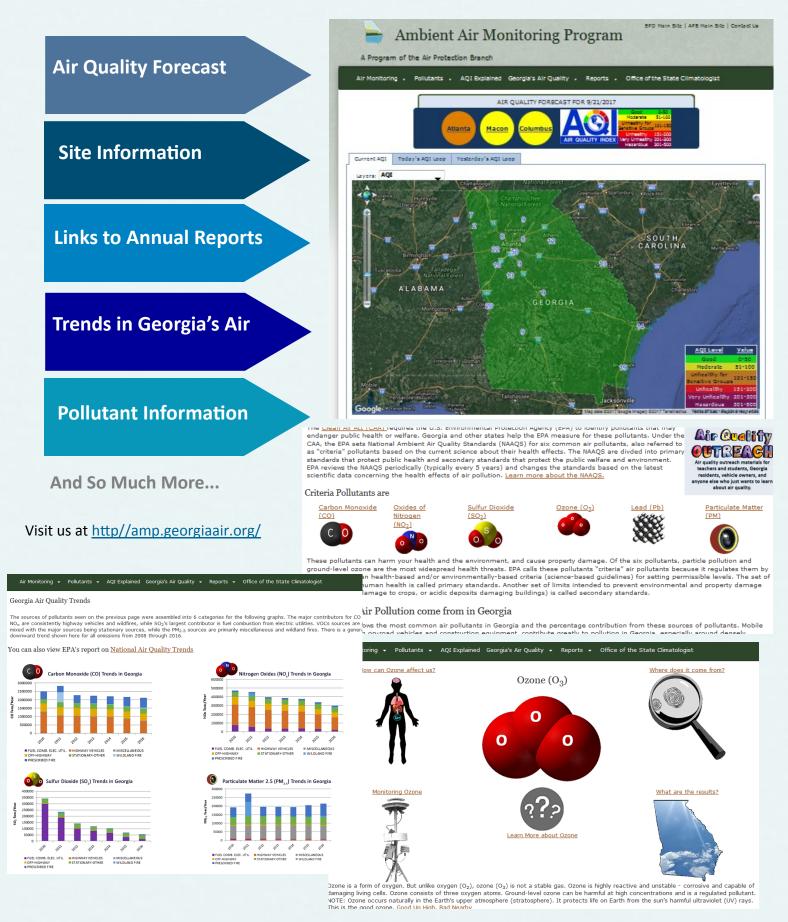
The EPA has set National Ambient Air Quality Standards for six pollutants, called <u>"criteria" air pollutants</u>. These standards are periodically reviewed, as required by the Clean Air Act, and revised, as appropriate.

What is 'attainment?'

With the criteria pollutants, a geographic area that meets or does better than the national ambient air quality standard (NAAQS) is called an *attainment area*. An area that does not meet this standard is called a *nonattainment area*. (www.epa.gov)

Where do we get emission inventory?

The <u>National Emissions Inventory (NEI)</u> is a detailed estimate of air emissions that include criteria pollutants and hazardous air pollutants. It is released every three years and it is based on data provided by the State, Local and Tribal Agencies.


Examples of Air Monitors in Georgia

Communication and Partnerships

Georgia EPD's Ambient Air Monitoring Website

Social Media Georgia Climate Office

https://www.facebook.com/georgiaclimate/

https://twitter.com/gaclimateoffice

11

f 🔽 🕨 NWSAtlanta

weather.gov/ffc

Reaching out into the Community

Educating school children and incorporating air quality information into the classroom-learning environment is an outreach strategy for the GA EPD Ambient Monitoring Program (AMP). AMP staff visit Georgia classrooms to discuss air quality, forecasting, and monitoring. Each program presented by the AMP is designed to supplement grade-specific curricula. Learning opportunities include meteorological lessons and forecasting techniques, among other relevant topics.

In many situations, these lessons involve hands-on activities and mini-field trips to the monitoring sites. High School students simulate forecasting conditions and use scientific methods to create their own forecasts. AMP staff also participate in Career Days at both elementary and high schools to promote environmental and meteorological careers.

AMP hosts an annual Air Quality Seminar and Air Monitoring Station fieldtrip for college interns in the Centers for Disease Control and Prevention's (CDC) Environmental Health Summer Intern Program, thereby reaching top college students from all over the country.

Air Quality specialists from Korea come to learn about GA EPD's Ambient Monitoring Program.

GA EPD Ambient Air Monitoring and air quality forecasting highlighted on WABE 90.1 radio.

Voluntary Emissions Reductions Programs– GA EPD Partners


Encouraging fewer vehicles on the road...

Get More by Driving Less

http://gacommuteoptions.com/

- Sponsored by the Atlanta Regional Commission (ARC).
- Distributes daily ozone forecasts (as well as PM_{2.5} forecasts produced by EPD and Georgia Tech) during the ozone season to enable citizens in the sensitive group category, as well as industries, to alter activities on days that are forecasted to have high ozone levels.
- Forecasts for the Atlanta, Macon and Columbus metropolitan areas.
- Rewards commuters for trying an alternative to driving alone to and from work (e.g. carpooling or trying transit).

With a focus on reducing all sources of diesel emissions in Georgia, the GADER program not only encompasses the Georgia School Bus Retrofit initiative, but also assists with funding, and education assistance and outreach for voluntary measures such as idling reduction, Truck Stop Electrification, the use of cleaner fuels, and diesel emissions controls to rail yards, long haul and delivery truck fleets, construction equipment, and more.

Helping schools afford cleaner school buses...

- Older diesel school buses are replaced early or fitted with an emissions control device to reduce emissions of oxides of nitrogen (NO_x).
- Selective catalytic reduction (SCR) is an emissions reduction technology used in diesel engines to convert NO_x pollution into harmless atmospheric nitrogen and water. The technology is enhanced when the engines run on low sulfur diesel fuel, the dominant fuel today.
- Diesel powered commercial trucks can add particulate trap filters to capture particulate matter pollution exhausted from their engines.
 - For information about the Georgia Diesel Emissions Reduction Program, go to http://www.gaderprogram.org/html/Retrofit.html.

Encouraging the use of alternative fuels...

Helping promote Truck Stop Electrification Stations...

- Diesel powered commercial trucks can produce emissions of oxides of nitrogen (NO_x) due to idling. Truck drivers are typically required to rest 8 hours for every 10 hours of travel time and their diesel engines are often idled during rest times to power air conditioning and heating systems.
- Truck stop electrification allows truck drivers to run their air conditioning, heating, electronic devices without having to run their diesel powered engines.
- Cool and warm air can be pumped into the trucks via a hose hookup at the electrified truck stops as well.

Working to reduce locomotive and rail yard emissions...

- Locomotives can be retrofitted with cleaner engines and technology that helps improve air quality.
- Smaller, more efficient modular diesel engines reduce emissions.
- New engines, known as "genset" and Tier 4 engines, utilize two or more smaller engines that can combine to equal the strength of the older engines.
- Automatic engine start/stop technology reduces idling.
- In-cylinder strategies include better fuel injection timing, and better rings and oil separators.
- 'Mother' locomotives and 'Slug' sets operate in tandem. The Mother's excess electrical power is used to drive the Slug's traction motors, saving fuel and reducing air pollution.
- 22 locomotives have been converted to Mother-Slug sets in Georgia, with several more sets to be completed by the end of 2017.
- Electric plugin stations allow the diesel engine to be shut down when temperatures drop below freezing and still keep the cooling water warm.

Air Quality in Georgia

Pollutants of Concern and Their Sources in Georgia

The list below shows the most common air pollutants in Georgia and their source by percentage. Mobile sources, including on-road vehicles, construction equipment and aircraft, contribute greatly to pollution in Georgia, especially around densely populated cities like in the Atlanta Metro area.

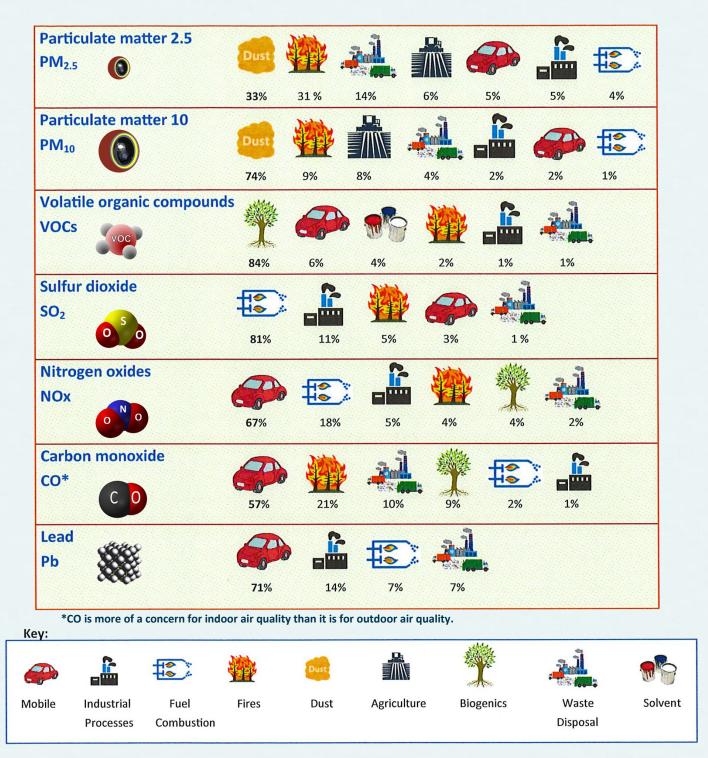
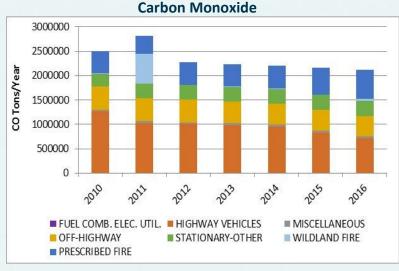
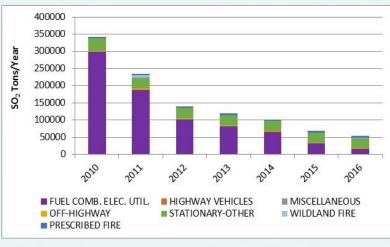
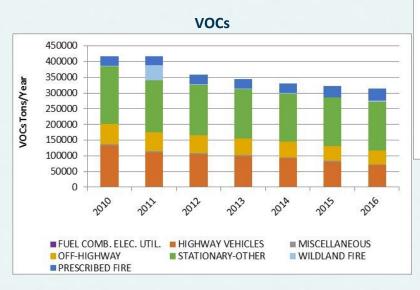



Figure 1: Pollutants of Concern and Their Sources in Georgia


Source: 2014 National Emissions Inventory


Emissions Trends in Georgia

The sources of pollutants seen on the previous page were assembled into seven categories for the following graphs. The major contributors for CO and NO_x are highway vehicles, while the largest contributors of SO_2 are electric utilities. Wildland and prescribed fires can have a large impact on $PM_{2.5}$ emissions, and VOCs come from a variety of stationary sources. There is a downward trend shown here for all emissions from 2008 through 2016. In 2011, there was a wildfire in the Okefenokee Swamp area that showed an uptick in the data for that year.

Sulfur Dioxide

Georgia's air quality is improving...

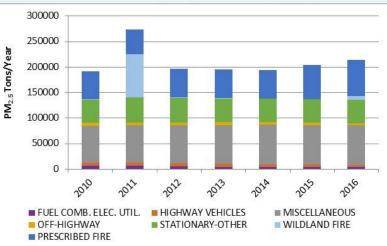


Figure 2: Emissions Trends in Georgia

Georgia's Ambient Air Monitoring Sites

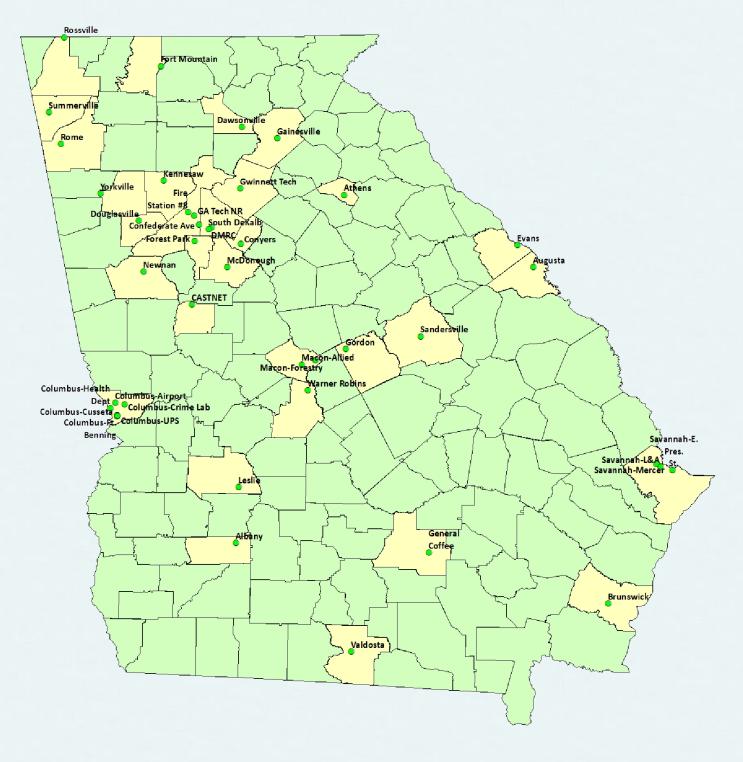


Figure 3. Georgia's ambient air monitoring sites For more detailed site information, see page 71.

Criteria Pollutants (six most common regulated pollutants)

The Clean Air Act (CAA) requires the U.S. Environmental Protection Agency (EPA) to identify pollutants that may endanger public health or welfare. Under the CAA, the EPA sets **National Ambient Air Quality Standards (NAAQS)** for six common air pollutants, also referred to as "criteria" pollutants based on the current science regarding their known health effects. The NAAQS are divided into primary standards that protect public health and secondary standards that protect the public welfare and environment. EPA reviews the NAAQS periodically, based on new findings about the health effects of air pollution. For more information about the NAAQS, please refer to EPA's website (https://www.epa.gov/criteria-air-pollutants/naaqs-table).

NAAQS have been established for six common air pollutants called criteria pollutants:

Carbon Monoxide (CO)

Oxides of Nitrogen (NO₂)

Sulfur Dioxide (SO₂)

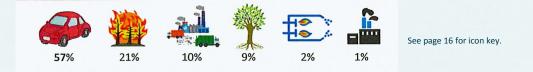
Ozone (O₃)

Lead (Pb)

Particulate Matter (PM)

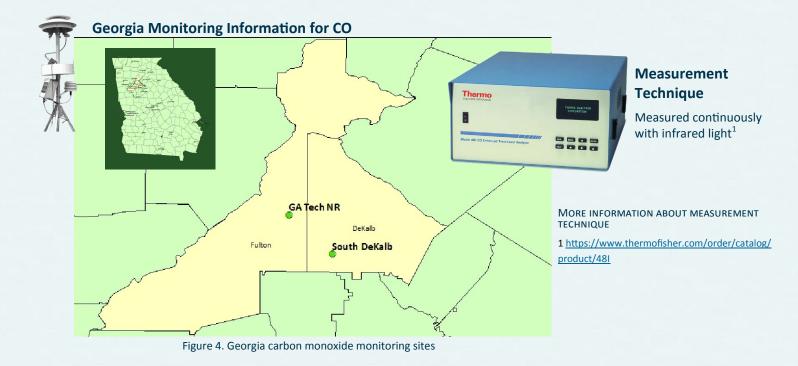
We monitor for these criteria pollutants and much more. Our monitoring network takes the guess work out of knowing what pollutants are in the air you breathe.

Carbon Monoxide (CO)


What is it?

• Carbon Monoxide is an odorless, colorless, and poisonous gas that is a by-product of incomplete burning. Learn more: <u>https://www.epa.gov/co-pollution</u>

С


Where does it come from?

- Carbon and oxygen can combine to form two different gases. When combustion of carbon is complete, in the presence of plenty of air, the product is mainly carbon dioxide (CO₂). Sources of carbon include; coal, coke, charcoal. When combustion of carbon is incomplete, *i.e.* there is a limited supply of air, only half as much oxygen adds to the carbon, and instead you form carbon monoxide (CO).
- In Georgia, 57% of the carbon monoxide comes from mobile sources including cars, construction equipment, aircraft, locomotives, and on the coast commercial marine vessels.

Health Impacts

- Increased risk of lower blood flow, anemia, and reduced heart activity.
- Sensitive groups include fetuses, young infants, pregnant women, elderly people, and individuals with anemia or emphysema.

National Ambient Air Quality Standards for Carbon Monoxide

Primary NAAQS:

8-hour average not to exceed 9 ppm more than once per year

1-hour average not to exceed 35 ppm more than once per year

Secondary NAAQS: None

Attainment Designation

All of Georgia is in attainment of both the 8-hour and 1-hour standards for carbon monoxide. Figure 5 and Figure 6 show how Georgia's CO compares to the two NAAQS.

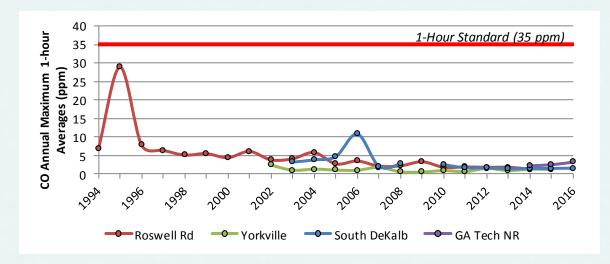


Figure 5. Carbon monoxide annual maximum 1-hour average compared to the 1-hour standard

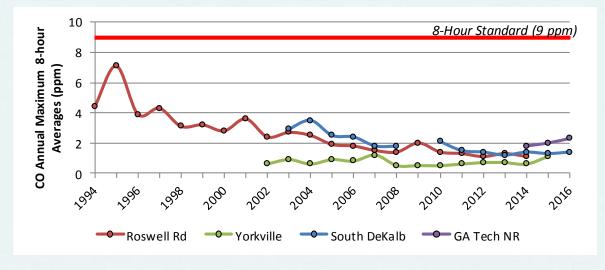


Figure 6. Carbon monoxide annual 8-hour average compared to the 8-hour standard

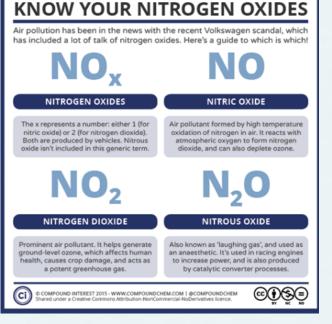
Oxides of Nitrogen (NO, NO₂, NO_x and NO_y)

What is it?

• Oxides of nitrogen are a mixture of gases that are composed of nitrogen and oxygen and primarily produced during combustion. Learn more: <u>https://www.epa.gov/no2-pollution</u>

Where does it come from?

 Nitrogen oxides (NO_x) are usually products of combustion from mobile sources such as vehicle engines and construction equipment engines. They also come from large industrial boilers, turbines, and kilns, as well as fires. In Georgia, 67% of NOx comes from vehicles.



See page 16 for icon key.

Health Impacts

and asthma

- NO₂ is formed from the oxidation of nitric oxide (NO).
- NO_Y consists of all atmospheric reactive nitrogen oxide compounds.

Source: http://www.compoundchem.com/2015/09/30/vehicle-emissions/

Georgia Monitoring Information for Oxides of Nitrogen

Increases risk of respiratory infections, respiratory diseases

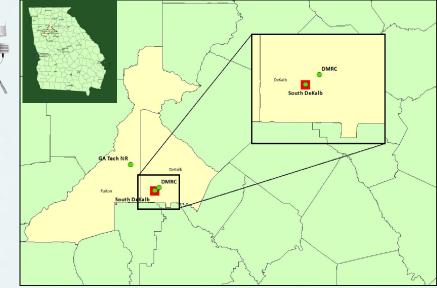
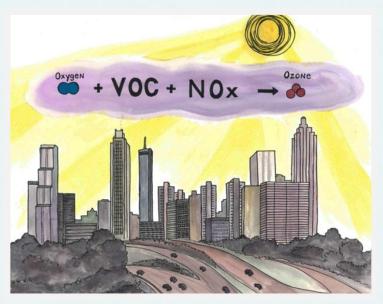


Figure 7. Georgia's NO/NO₂/NO_x monitoring sites (green circles) and NO_Y site (red square)


Measurement Technique Measured continuously with chemiluminescent method²

MORE INFORMATION ABOUT MEASUREMENT TECHNIQUE

2 https://www.thermofisher.com/order/catalog/product/421

NO_x Daily Cycle

 NO_x reacts with volatile organic compounds in the presence of sunlight to form ground level ozone (O₃) pollution which causes NO_x levels to drop in the middle of a sunny day and increase at night on a daily basis.

(Courtesy of Jamie Smith)

Because this pattern typically reoccurs each day within a 24-hour period, this is known as a diurnal cycle.

The following graph shows a comparison of the daily average of hourly NO_2 data at the near-road sites, DMRC and Georgia Tech, compared to the South DeKalb NO_2 site.

- The two near-road sites (shown in green and red) display the highest daily averages.
- The cyclical diurnal pattern of lower concentrations mid-day and higher concentrations in evening is shown below.

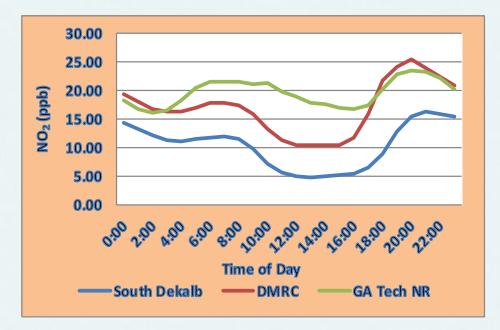
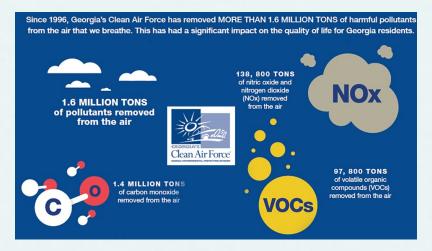



Figure 8. Diurnal Pattern of NO₂

Reducing NO_x Emissions in Georgia

Ozone formation in the southeastern United States is driven by emissions of nitrogen oxides (NO_x) in large urban areas with high vehicle traffic. Therefore, Georgia has focused efforts on reducing the emissions of NO_x , particularly in the Atlanta ozone nonattainment area.

 Our vehicle emissions inspection program, also known as Georgia's Clean Air Force, which covers the counties of Cherokee, Clayton, Cobb, Coweta, DeKalb, Douglas, Fayette, Forsyth, Fulton, Gwinnett, Henry, Paulding, and Rockdale, helps reduce NO_x, the main precursor to ozone.

A series of Georgia air quality rules were implemented in 1999 through 2014 specifically targeting NO_x emissions from combustion sources such as industrial boilers and electric steam generating units at power plants, especially large coal-fired units. Figure 9 shows how NO_x pollution in Georgia declined as NO_x controls were implemented at large stationary sources from 1999 through 2014. The Georgia multi-pollutant rule, implemented 2008-2014, required additional NO_x reductions at power plants in addition to reductions in mercury and sulfur dioxide emissions. During the same time, national manufacturing standards required greater efficiency and performance from engines in vehicles, construction equipment, and generators which also helped reduce NO_x emissions nationwide, including Georgia.

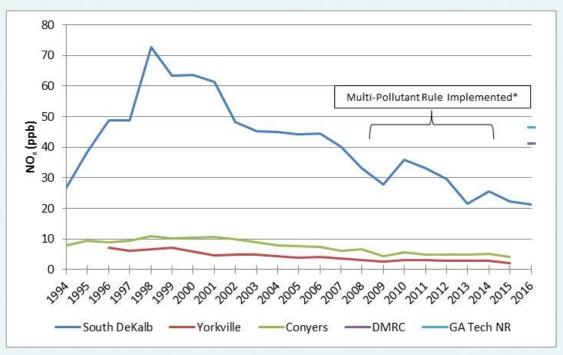


Figure 9. Implementation of NO_x Controls

*Multi-pollutant Rule is discussed on page 27.

National Ambient Air Quality Standards for Nitrogen Dioxide		
Primary NAAQS: Annual mean must not exceed 53 ppb 3-year average of the 98 th percentile of daily maximum one-hour average must not exceed 100 ppb		
Secondary NAAQS:	Annual mean must not exceed 53 ppb	
Attainment Designation	1	
 NO₂ monitoring is required. Metropolitan Statistical 	uired in urban areas with populations exceeding one million. The Atlanta-Sandy Springs-Roswell Area (MSA) is the only urban area in Georgia required to perform NO2 monitoring.	
 Figure 10 shows Georgi below the standard of 5 	a's annual average NO_2 concentrations from 2000 to 2016. Annual average concentrations are well 3 ppb.	
EPD operates two near-	road monitoring sites (Georgia Tech and DMRC) to study the effects of traffic pollution.	
• Figure 11 indicates that	Georgia's 1-hour design values are well below the 100 ppb national standard.	

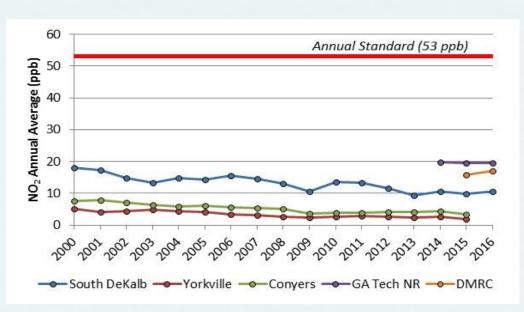


Figure 10. Nitrogen dioxide annual averages compared to the annual standard

Figure 11. Nitrogen dioxide 1-hour design values compared to the 1-hour standard

Sulfur Dioxide (SO₂)

What is it?

Sulfur dioxide (SO₂) is a colorless reactive gas that is formed by burning sulfur-containing material, such as coal or diesel fuel, or by processing sulfur-containing clays. Learn more: <u>https://www.epa.gov/so2-pollution</u>

• 81% of SO₂ emissions in Georgia come from electric generation and large industrial boilers.

- SO₂ can be oxidized in the atmosphere into sulfuric acid, and form acid rain.
- Sulfur is oxidized to form SO₂ during combustion. SO₂ then can react with other pollutants to form aerosols, which are solid or liquid particles in a gas. SO₂ can also form sulfate particles, that contribute to the formation of fine particulate matter (PM_{2.5}).

See page 16 for icon key.

• In liquid form, SO₂ may be found in clouds, fog, rain, aerosol particles, and in surface liquid films on these particles.

Environmental Impacts

Both SO₂ and NO₂ can form acid rain that lead to acidic deposition³.

Health Impacts

- SO₂ can impair respiratory function, increase respiratory disease, and reduce lung's ability to clear foreign particles especially in sensitive groups like children, the elderly, and individuals with asthma, hyperactive airways, and cardiovascular disease.
- Short-term peak exposures can cause significant constriction of air passages in sensitive asthmatics, wheezing, shortness of breath, and coughing in these sensitive groups, and affect ability to perform exercise.

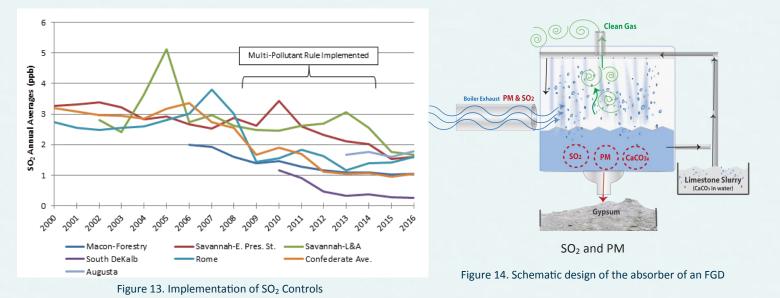
Georgia Monitoring Information for Sulfur Dioxide (SO₂)

Measurement Technique

Continuous ultraviolet fluorescence⁴

MORE INFORMATION ABOUT MEASUREMENT TECHNIQUE

⁴ <u>https://www.thermofisher.com/order/catalog/</u> product/431


Figure 12. Georgia's sulfur dioxide monitoring sites

³Acid deposition causes damage to forests, man-made structures, and streams and lakes, which can be deadly for aquatic wildlife.

Reducing SO₂ in Georgia

Georgia's Multi-Pollutant Rule

- In 2007, Georgia implemented State Rule 391-3-1-.02(2)(sss), which affects the 13-county Atlanta nonattainment area plus surrounding counties.
- This multi-pollutant control measure for electric steam generating units at electric utilities required coal fired power plants to install controls to reduce three criteria pollutants, PM, NO_x, and SO₂, and had rolling start dates between 2008 and 2014.
- The controls are called Selective Catalytic Reduction (SCR) for NO_x and Flue Gas Desulfurization (FGD) for SO₂ and PM.
- Figure 13 shows the decrease in SO₂ concentrations as these controls have been implemented across the state.

Statewide SO₂ Concentration Comparison from 2005 to 2014

- Figure 15 compares the concentrations of sulfur dioxide from 2005-2007 and 2011-2014 in Georgia on a scale of 0 to 1 in Dobson units (DU)⁵.
- These maps were created by NASA using satellite data and depict multi-year averages of sulfur dioxide concentrations over the eastern United States.
- According to analyses of satellite data, in the eastern U.S., levels of sulfur dioxide have dropped by about 80 percent between 2005 and 2014.

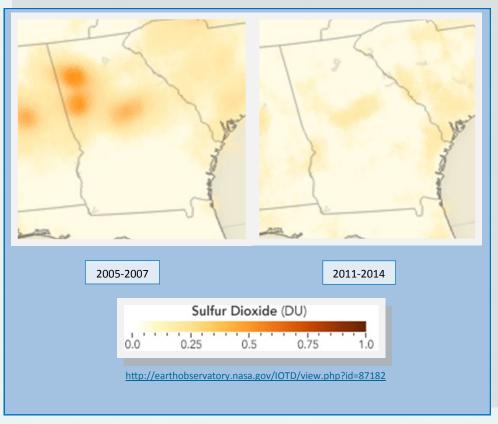


Figure 15.

⁵A Dobson unit (DU) is a measurement of density of a gas in a column of the Earth's atmosphere.

National Ambient Air Quality Standards for Sulfur DioxidePrimary NAAQS:3-year average of 99th percentile of the daily maximum 1-hour concentration
not to exceed 75 ppbSecondary NAAQS:3-hour concentrations not to exceed 0.5 ppm (500 ppb) more than once per
yearAttainment Designation

- EPA strengthened the SO₂ primary National Ambient Air Quality Standard (NAAQS) in 2010 and has developed a 4-phase process for designations. Please refer to EPA's information on the SO₂ data requirement rules for more details⁵.
- All the SO₂ design⁶ values, for 2014-2016 in Georgia, were below the 1-hour standard, with the highest design value occurring at the Augusta site (60 ppb).

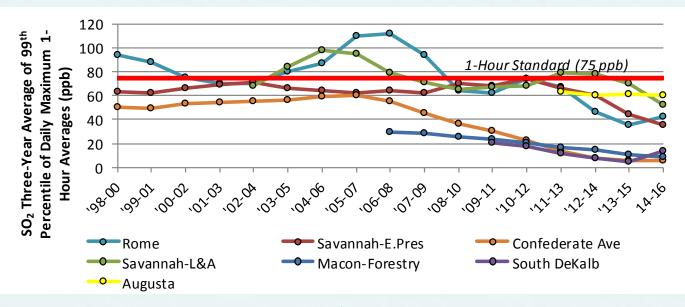
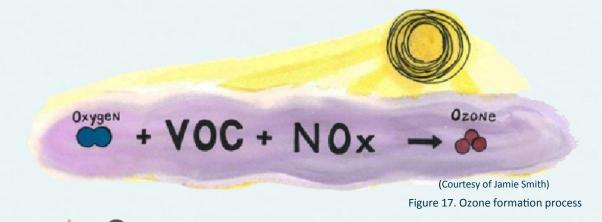


Figure 16. SO₂ three-year averages of the 99th percentile of annual daily max 1-hour averages

⁵https://www.epa.gov/so2-pollution/final-data-requirements-rule-2010-1-hour-sulfur-dioxide-so2-primary-national-ambient

⁶Three-year average of the 99th percentile of annual daily maximum 1-hour averages

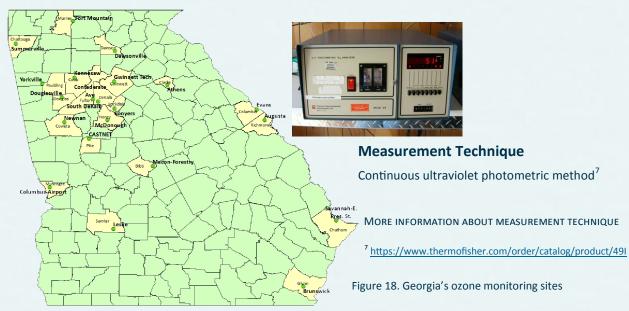
Ozone (O₃)



What is it?

Ozone is a form of oxygen. But unlike oxygen (O_2) , ozone (O_3) is not a stable gas. Ozone is highly reactive and unstable corrosive and capable of damaging living cells. Ground-level ozone can be harmful at high concentrations and is a regulated pollutant. NOTE: Ozone occurs naturally in the Earth's upper atmosphere (stratosphere) where it protects life on Earth from the sun's harmful ultraviolet (UV) rays. This is the good ozone. "Good Up High, Bad Nearby." Learn more: https://www.epa.gov/ozone-pollution

Where does it come from?


Ground-level ozone is not emitted directly into the air, but is created by chemical reactions between nitrogen oxides (NO_x) and volatile organic compounds (VOC) in the presence of sunlight. Major sources of NO_x include emissions from industrial facilities, electric utilities and motor vehicle exhaust. In Georgia, the major sources of VOC are natural sources such as trees and vegetation. Other VOC sources include gasoline vapors and chemical solvents.

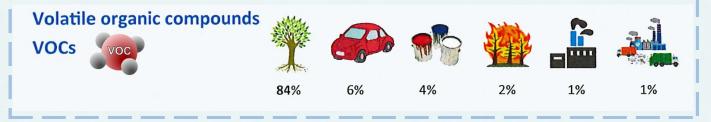
Health Impacts

- Ozone can irritate the mucous membranes of the nose, throat, and airways which can lead to coughing and chest pain.
- It can increase risk of respiratory infections in people with asthma and respiratory disease.
- Ozone reduces the ability to perform physical exercise by impairing normal lung function.
- Repeated exposure may cause permanent scarring of lung tissue.

Georgia Monitoring Information for Ozone

EPA's CASTNET Site

- As part of the Clean Air Status and Trends Network (CASTNET), EPA established a monitoring site in Pike County, Georgia in 1988.
- The CASTNET site is part of a national air quality monitoring network put in place to assess long-term trends in atmospheric deposition and ecological effects of air pollutants.
- The CASTNET site is one of 95 regional sites across rural areas of the United States and Canada measuring nitrogen, sulfur, and ozone concentrations, and deposition of sulfur and nitrogen.
- Like the South DeKalb ozone monitor, the CASTNET ozone monitor also collects data year-round. <u>https://www.epa.gov/castnet</u>


More Information about Ground Level Ozone

• Ground level ozone formation occurs through a complex series of photochemical reactions that take place in the presence of sunlight, causing a diurnal pattern (high ozone during the day, low ozone at night, see Figure 19).

- The photochemical reactions require a reaction between oxides of nitrogen (NO_x) and volatile organic compounds (VOCs).
- Since there will always be strong sunshine in the summer, and the naturally-occurring (or biogenic) levels of VOCs in Georgia are high, the most effective way to control ozone production in Georgia is to reduce emissions of NO_x in the summer.

Examples of the most common reactive VOCs that contribute to ozone formation are: hydrocarbons found in automobile exhaust (benzene, propane, toluene); vapors from cleaning solvents (toluene); and biogenic emissions from plants and trees (isoprene). In Georgia, biogenic emissions account for 84% VOCs.

- With the exception of the South DeKalb and CASTNET sites, ozone in Georgia, unlike other pollutants previously discussed, is monitored March through October, complying with federal monitoring regulations (in 40CFR Part 58).
- Ozone is prevalent in urban areas in the summer but can appear in other areas due to weather patterns that can move air or many hundreds of miles.

National Ambient Air Quality Standards for Ozone

Primary NAAQS:

3-year average of 4th highest daily maximum 8-hr concentration not to exceed 0.070 ppm

Secondary NAAQS:

Same as the Primary Standards

Attainment Designation

- Ozone monitoring has been in place in the Atlanta area since the 1970's.
- Currently the Atlanta-Sandy Springs-Roswell MSA ozone network includes ten monitors located in ten counties.
- On March 27, 2008 the ozone primary standard level was lowered to 0.075 ppm for the 8-hour averaging time, fourth maximum value, averaged over three years (Federal Register, Vol. 73, No. 60, page 16436).
- With the implementation of this ozone standard, the boundary of the Atlanta nonattainment area was defined as a 15-county area (Figure 20).

- With the 2013-2015 ozone data, the entire state of Georgia (including Atlanta) met the 2008 ozone standard of 0.075 ppm for ozone.
- Georgia was redesignated to attainment on May 22, 2017.
- On October 1, 2015, EPA lowered the ozone standard to 0.070 ppm⁸.
- A violation of the standard is determined by using an 8-hour average of the fourth maximum daily value, averaged over three years. There has been a gradual reduction in the number of days exceeding the ozone standards (Figure 21).

Figure 20. Georgia's 8-hour ozone nonattainment area (NAA) map for the 2008 standard


Figure 21. Ozone design values for Atlanta-Sandy Springs-Roswell MSA

⁸https://www.epa.gov/ozone-pollution/2015-revision-2008-ozone-national-ambient-air-quality-standards-naaqs-supporting

8-hour ozone exceedances in Atlanta-Sandy Springs-Roswell MSA

In 2016, the Atlanta-Sandy Springs-Roswell MSA area had a total of 29 days that exceeded the current (0.070 ppm) 8-hour standard. 2016 was one of the hottest and driest summers on record for Georgia.

The term 'exceedance' is defined as a daily maximum 8-hour average greater than the standard. The Atlanta-Sandy Springs-Roswell MSA ozone monitors which exceeded the 8-hour ozone standard (0.070 ppm) in 2016 are mapped in Figure 22.

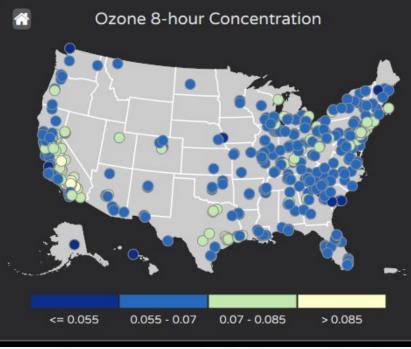


Figure 23.

National 8-hour ozone concentrations

Figure 23 was taken from EPA's "Our Nation's Air- Status and Trends through 2015" (<u>https://gispub.epa.gov/air/</u> <u>trendsreport/2016/</u>). It shows the fourth maximum reading for the 8-hour ozone readings across the United States. Georgia's fourth maximum ozone readings in 2015 were in the 0.055-0.07 ppm (light blue) and 0.07-0.085 ppm (green) ranges.

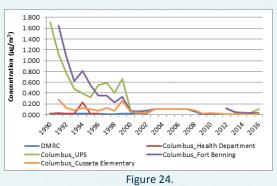
What is it?

Lead is a naturally occurring element found in small amounts in the earth's crust. While it has some beneficial uses, it can be toxic to humans and animals causing detrimental health effects. Learn more: <u>https://www.epa.gov/lead</u>

Where does it come from?

- In the past, the Clean Air Act required extensive lead monitoring to detect the high levels of airborne lead that resulted from the use of leaded gasoline. With the phase-out of leaded gasoline, lead concentrations decreased drastically by the late 1980s. Figure 24 shows the drop in annual averages from 1990 through 2016.
- A major source of lead is acid battery plants. Lead can also come from the dust of vehicle traffic, construction activities, and agricultural activities and deposit on leaves and plants.

Health Impacts


- Puts children at particular risk exposure since they commonly put hands, toys, and other items in their mouths, which
- may come in contact with lead-containing dust and dirt.
- Bioaccumulates in blood, bones, and tissues.
- Can damage kidneys, liver, and nervous system.
- Excessive and repeated exposure leads to neurological impairments that can cause seizures, mental retardation, and behavioral disorders especially in children, infants, and fetuses.
- Lead toxicity is rarely attributed to a single exposure or digestive event, it is the product of chronic exposure over time.
- May be a factor in high blood pressure and subsequent heart disease.

T.

Georgia Monitoring Information for Lead

Figure 25. Georgia's lead monitoring sites

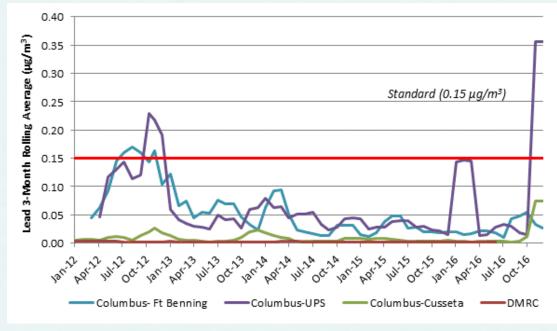
Measurement Technique

24-hour total suspended particulate (100 microns or less) on 8"x10" pre-weighed fiberglass filter⁹

MORE INFORMATION ABOUT MEASUREMENT TECHNIQUE ⁹ <u>https://tisch-env.com/high-volume-air-samplers/</u>

National Ambient Air Quality Standards for Lead

Primary NAAQS:


Rolling 3-month average, not to exceed 0.15 ug/m³

Secondary NAAQS:

Same as the Primary Standards

Attainment Designation

- Figure 26 shows how Georgia's lead data compares to the rolling three-month average standard for 2012 through 2016.
- The last of the three months used for each average is indicated on the graph.
- The two monitors in the Columbus GA-AL MSA are located near a lead battery manufacturer, and have shown higher readings compared to the other monitors in the Columbus GA-AL MSA or the Atlanta-Sandy Springs-Roswell MSA.
- In November 2016, there was a violation of the lead standard in Columbus due to a malfunction on a silo control and is reflected in the graph below.

Particulate Matter PM₁₀ and PM_{2.5}

Learn more: https://www.epa.gov/pm-pollution

- Particulate matter includes a broad range of material that
 consists of solid particles, fine liquid droplets, or condensed liquids absorbed onto solid particles.
- Airborne particulates are not a single pollutant as discussed for the other criteria pollutants, but rather a mixture of many different air pollutants.
- There are two ways that particulate matter is formed, known as primary and secondary.
- Primary sources that emit particles directly include combustion, incineration, construction, mining, metals smelting, metal processing, and grinding sources.
- Other primary sources include diesel engine exhaust, road dust, wind blown soil, forest fires, open burning of vegetation for land clearing or waste removal, ocean spray, and volcanic activity.
- A great deal of particulate matter is in form of gaseous air pollutants that readily react with oxygen and each other.
 While many of those reactions produce other gases, they frequently produce particles. Particles formed through this process are known as secondary particulate matter such as sulfate particles, nitrate particles, and calcium nitrate or sodium nitrate particulates.
- Alternative diesel fuels are available that emit less particulate matter, as well as other pollutants.

- Ultra-low sulfur diesel fuel is one fuel that emits less sulfur dioxide, a source of particulate matter formation.
- Biodiesel fuel emits less particulate matter, carbon monoxide, hydrocarbons, and air toxics.
- Also, emulsified diesel emits less nitrogen oxides and particulate matter.
- Particulate pollution may be categorized by size since there are different health impacts associated with the different sizes of particulate matter.
- We currently monitor for three sizes of particles: PM_{10} (up to 10 microns in diameter), $PM_{2.5}$ (up to 2.5 microns in diameter) and PM_{coarse} (PM_{10} minus $PM_{2.5}$). To illustrate the size differences, Figure 27 shows how approximately ten PM_{10} particles can fit on a cross section of a human hair, and approximately thirty $PM_{2.5}$ particles would fit on a cross section of a hair.
- These particles and droplets are invisible to the naked eye, and composition and sources can vary greatly by region.
- Regional relative humidity can affect the level of water present within the particles and affect how much dissolved gases or reactive species enter the lungs when particles are inhaled.

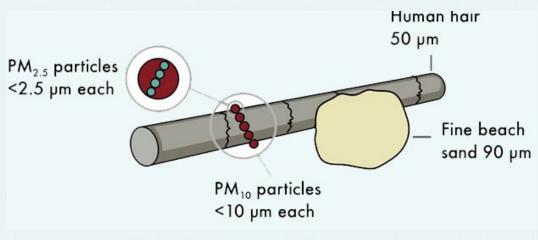
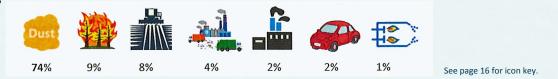


Figure 27. Comparison of particulate matter size to human hair

PM₁₀


What is it?

PM₁₀ are dust particles that are up to 10 micrometers in diameter.

Where does it come from?

Sources include crushing or grinding operations and dust stirred up by vehicles on roads.

- Penetrate deeply into the lungs.
- Breathing and respiratory problems, aggravation of existing respiratory and cardiovascular disease, alterations in the body's defense system against inhaled materials and organisms, and damage to lung tissue.
- Individuals with chronic lung or cardiovascular disease, individuals with influenza, asthmatics, elderly people, and children are most effected.

Georgia Monitoring Information for PM₁₀

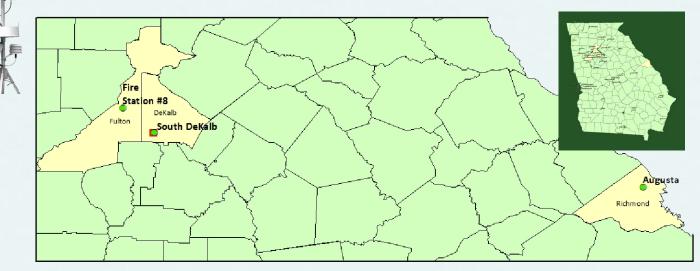


Figure 28. Georgia's PM_{10} and PM_{coarse} (red square) monitoring sites

Measurement Techniques

- Two types of EPA-approved reference or equivalent monitors used to determine attainment with the PM₁₀ standard:
- ⇒ Integrated low-volume monitor that collects a 24-hour sample through an impaction inlet device that only allows particles with 10 microns or less in size to reach the filter media.¹⁰
- \Rightarrow Continuous beta ray attenuation monitor, with an inlet designed to cut out particles larger than 10 microns in size.¹¹

MORE INFORMATION ABOUT MEASUREMENT TECHNIQUES

¹⁰ https://tisch-env.com/low-volume-air-sampler/
¹¹ http://metone.com/air-quality-particulate-monitors/regulatory/bam-1020/

National Ambient Air Quality Standards for Particulate Matter PM₁₀

Primary NAAQS:

Number of days with a maximum of 24-hour concentration of 150 μ g/m³ must not exceed more than once per year on average over 3 years

Secondary NAAQS:

Same as the Primary Standards

Attainment Designation

- Figure 29 shows how Georgia compares to the 24-hour standard for PM₁₀, which is 150 μg/m³.
- The standard allows one exceedance per year, averaged over a 3-year period; therefore, this chart shows the second highest 24-hour average for each site. All three samplers collected data well below the standard.

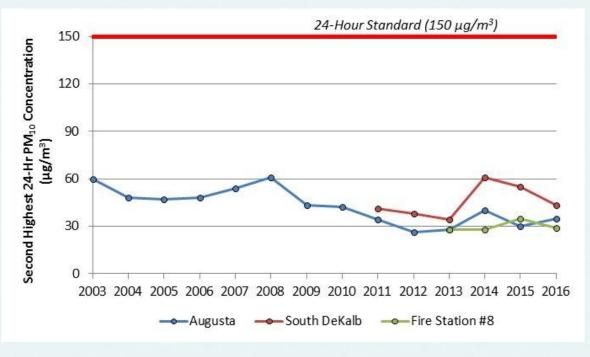


Figure 29. PM₁₀ annual second maximum 24-hour concentrations

What is it?

 PM_{2.5} are particles that are 2.5 micrometers in diameter or smaller, and can only be seen with an electron microscope. Most particles form in the atmosphere as a result of complex reactions of chemicals such as sulfur dioxide and nitrogen oxides.

Where does it come from?

• Fine particles are produced from dust and all types of combustion, including motor vehicles, power plants, residential wood burning, forest fires, agricultural burning, and some industrial processes.

Health Impacts

- Can penetrate deep into lung tissue and even enter the bloodstream. This may cause significant respiratory or cardiovascular problems that can shorten an individual's lifespan.
- High risk groups include children, the elderly, and people with cardiovascular or lung diseases such as emphysema and asthma.

Measurement Techniques

- Two types of methods: integrated and continuous.
- The integrated samplers are the official reference method (FRM) used for determining which areas in Georgia are attainment (meeting the national standard). Integrated samplers collect samples on Teflon filters for 24 hours, using a 2.5 microns particle size sorting device.¹²
- The continuous method consists of two types of instruments.
 - ⇒ The beta attenuation method (BAM) is designed for the inlet to cut out particles larger than 2.5 microns in size. EPD has two sites where BAM samplers are running as Federal Equivalent Method (FEM) samplers that can be used for attainment determinations as well: South DeKalb and Albany.¹³
 - \Rightarrow The tapered element oscillating microbalance (TEOM) method is used to support the development of air quality models and forecasts, including the Air Quality Index (AQI), and provide the public with information about pollutant concentrations in real time. As set up at EPD's sites, these samplers cannot be used for making attainment determinations.¹⁴
- Continuous PM_{2.5} data is reported every hour on Georgia's Ambient Air Monitoring web page located at http://amp.georgiaair.org/. The immediate availability of this data allows the public to make informed decisions regarding their outdoor activities.

MORE INFORMATION ABOUT MEASUREMENT TECHNIQUES

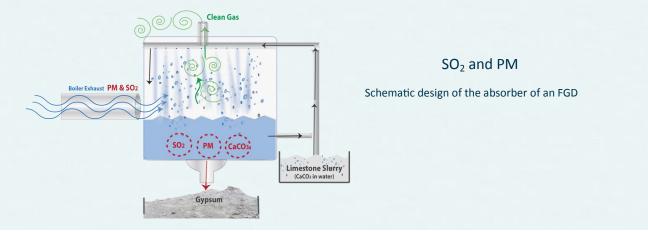
 ¹²https://www.thermofisher.com/order/catalog/ product/2025I
 ¹³http://www.metone.com/products/air-quality-monitors/
 ¹⁴https://www.thermofisher.com/order/catalog/

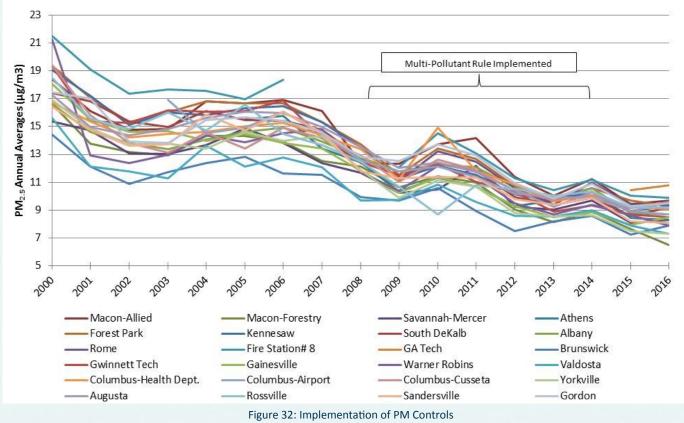
2016 Ambient Air Surveillance Report

Figure 30 shows the location of Georgia's $PM_{2.5}$ FRM monitors and Figure 31 shows the location of $PM_{2.5}$ continuous and speciation monitors.



Figure 30. Georgia's PM_{2.5} FRM monitoring sites




Figure 31. Georgia's PM_{2.5} continuous (green circles) and PM_{2.5} speciation (red squares) monitoring sites

PM Controls

Georgia's Multi-Pollutant Rule

- In 2007, Georgia implemented State Rule 391-3-1-.02(2)(sss), which affects the 13-county Atlanta nonattainment areas plus surrounding counties.
- This multi-pollutant control measure that affected electric steam generating units at electric utilities required coal fired power plants to install controls to reduce three criteria pollutants, PM, NO_x, and SO₂, and had rolling start dates between 2008 and 2014.
- The controls that were added are called Selective Catalytic Reduction (SCR) for NO_x and Flue Gas Desulfurization (FGD) for SO₂ and PM.
- Figure 32 shows the decrease in PM_{2.5} concentrations as these controls were implemented across the state.

2016 Ambient Air Surveillance Report

National An	nbient Air Quality Standards for Particulate Matter PM _{2.5}
Primary NAAQS:	3-year average of the annual weighted mean not to exceed 12.0 μ g/m ³
	3-year average of the 98 th percentile of 24-hour concentration not to exceed 35 μ g/m ³
Secondary NAAQS:	3-year average of the annual weighted mean not to exceed 15.0 μ g/m ³
	3-year average of the 98 th percentile of 24-hour concentration not to exceed 35 μ g/m ³

Attainment Designation

- For an area to be in attainment of the annual ambient air PM_{2.5} standard, the three-year average of the annual average concentrations has to be less than or equal to 12.0 μg/m³.
- In addition, the 24-hour primary and secondary standard requires that the three-year average of the 98th percentile of the 24-hour concentrations be less than or equal to 35 micrograms per cubic meter.
- Currently all areas of Georgia are designated unclassifiable/attainment for the 2012 annual PM_{2.5} standard because they are meeting the national standard.

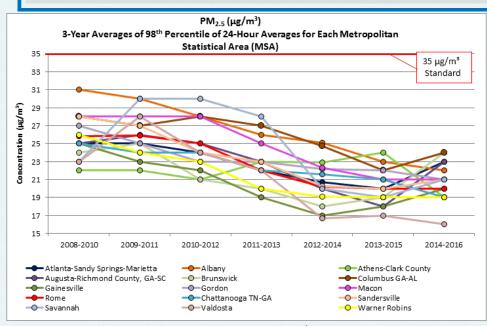


Figure 33. Comparison of the three-year averages of the 98th percentile of PM_{2.5} 24-hour data

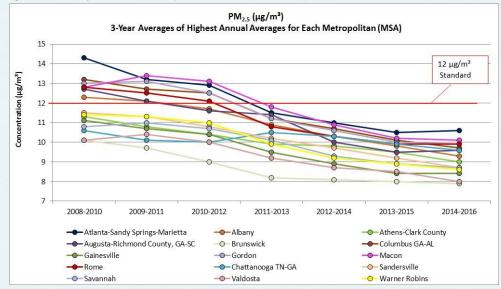
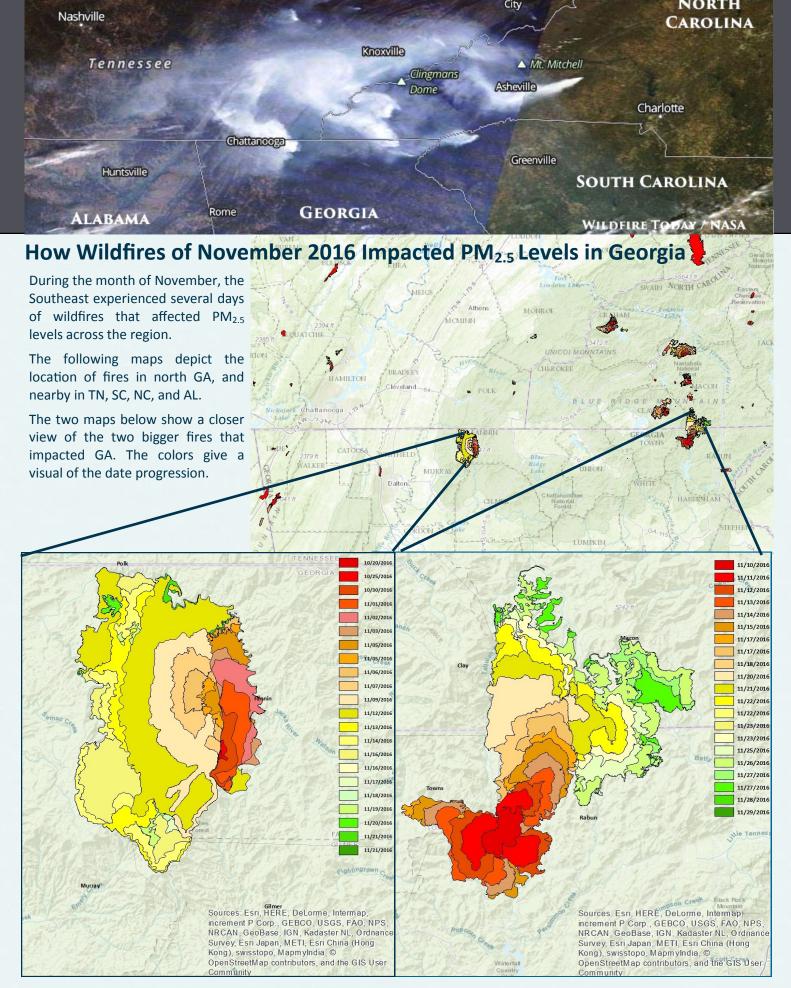
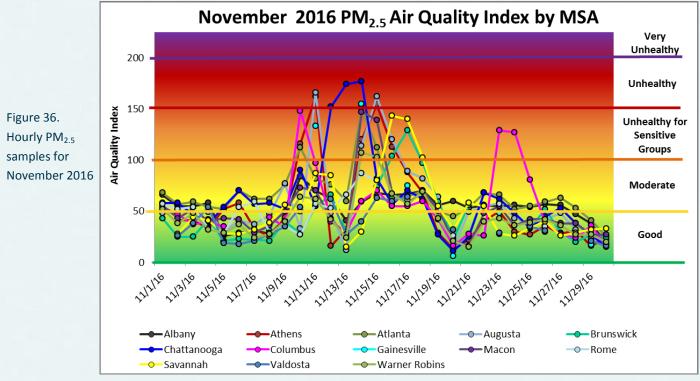
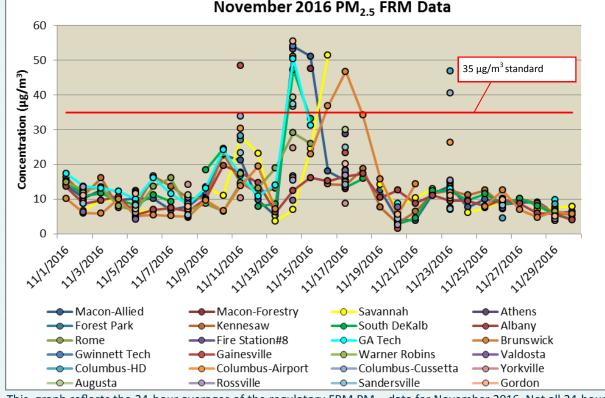


Figure 34. Comparison of the PM_{2.5} three-year annual averages to the annual standard


Figure 35. Location of wildfires

In the following graphs, the $PM_{2.5}$ ambient monitoring data is shown in more detail for November 2016. The first graph shows the daily Air Quality Index (AQI) for the $PM_{2.5}$ data for each metropolitan area (MSA). Several monitors were affected from November 9th through November 17th, and had $PM_{2.5}$ concentrations that were considered "Unhealthy". The second graph reflects the 24-hour averages of the regulatory FRM $PM_{2.5}$ data for November 2016. The red line depicts the daily standard of 35 µg/m³. While the $PM_{2.5}$ data was affected by the wildfires and there were 24-hour averages above the daily standard, Georgia continued to be below both of the $PM_{2.5}$ National Ambient Air Quality Standards for 2016.

This graph shows the daily Air Quality Index (AQI) for $PM_{2.5}$ data for each metropolitan area (MSA). Several $PM_{2.5}$ concentrations were considered "Unhealthy" in November 2016.

Figure 37. 24-hour PM_{2.5} samples for November 2016

This graph reflects the 24-hour averages of the regulatory FRM PM_{2.5} data for November 2016. Not all 24-hour samplers run daily.

PM_{2.5} Speciation

Particle speciation measurements are performed to support the regulatory, analytical, and public health purposes of the program. These measurements help scientists and regulators track the progress and effectiveness of newly implemented pollution controls. The data also improves scientific understanding of the relationship between particle composition, visibility impairment, and adverse human health effects.

Each individual particle, regardless of its source, has a distinct chemical composition which depends on local sources and a variety of other factors. Each has varying health effects based on its size and chemical composition.

Georgia currently monitors fifty-three species in particulate matter. Of these, sulfate and organic carbon are detected in the highest concentrations, with magnitudes of up to five to nine times greater than the other major species.

Refer to Figure 31 for a map of Georgia's PM_{2.5} Speciation monitors.

Figure 38 compares the percent composition of PM_{2.5} for each site based on 2015 annual averages. At the time this report was compiled, all of the 2016 PM_{2.5} speciation data was not available from EPA.

- Organic carbon makes up 41-51% of PM_{2.5} for all sites with Augusta having the largest percentage.
- Sulfate is the second largest portion of PM_{2.5} for all sites except Augusta and ranges from 12-24%.
- Nitrate, crustal, elemental carbon, and ammonium ion make up no more than 11% of PM_{2.5} for all sites.
- The chemical elements typical of the Earth's crust are grouped together as "crustal".

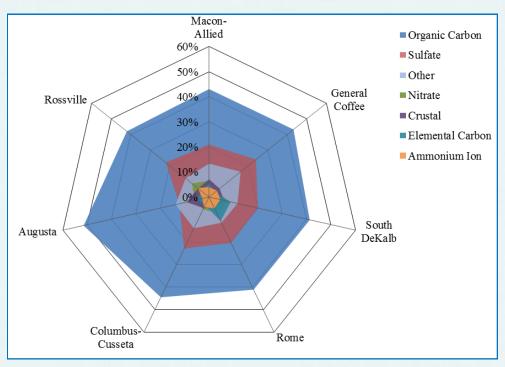


Figure 38.

Measurement Techniques^{15,16}

- Filter media with laboratory techniques using gravimetric (microweighing) analysis
- X-ray fluorescence and particle-induced X-ray emission for trace elements; Ion chromatography for anions and selected cations
- Controlled combustion for carbon
- Gas chromatography/mass spectroscopy (GC/MS) for semivolatile organic particles

MORE INFORMATION ABOUT MEASUREMENT TECHNIQUES ¹⁵<u>http://www.urgcorp.com/index.php/systems/manual-sampling-systems/urg-</u> <u>3000n-carbon-sampler</u> ¹⁶http://www.metone.com/?wpfb_dl=228

PREDOMINANT SPECIES FOUND IN PM_{2.5}

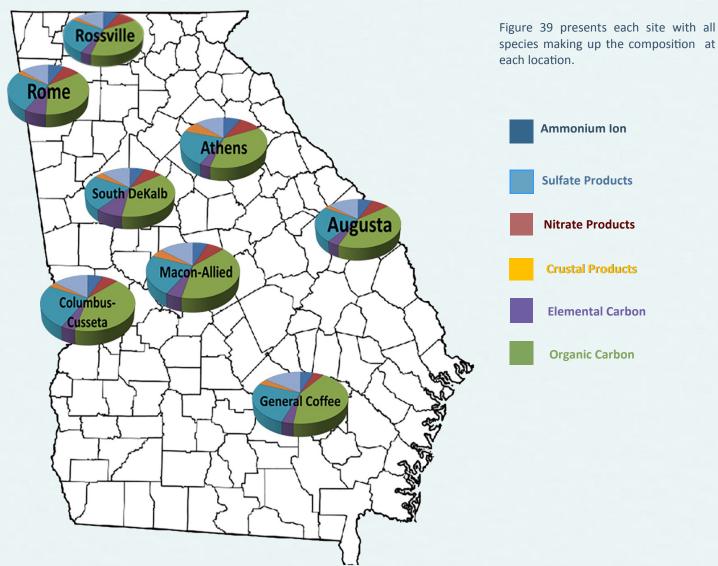


Figure 39. Annual averages of PM_{2.5} composition data in Georgia

Ammonium lon: commonly released by fertilizer production, livestock production, coke production, and some large refrigeration systems. Ironically, it can be emitted by NO_x control systems installed on large fossil fuel combustion systems, which use ammonia or urea as a reactant.

Sulfate Products: formed during the oxidation of SO₂ in the atmosphere.

Nitrate Products: formed through a complex series of reactions that convert NO_x to nitrates - vehicle emissions and fossil fuel burning.

Crustal Products: components that are the result from the weathering of Earth's crust—ocean salt and volcanic discharges— aluminum, calcium, iron, titanium, and silicon—released by metals production, and can be resuspended in the atmosphere by mechanisms that stir up fine dust, such as mining, agricultural processes, and vehicle traffic.

Elemental Carbon: carbon in the form of soot- diesel engine emissions, wood-burning fireplaces, and forest fires.

Organic Carbon: may be released directly, but are also formed through a series of chemical reactions in the air, mostly as a result of the burning of fossil fuels and wood.

The Air Quality Index

The Air Quality Index (AQI) is a national air standard rating system developed by the U.S. Environmental Protection Agency. The AQI is used statewide to provide the public, on a daily basis, with an analysis of air pollution levels and possible related health risks.

AIR QUALITY INDEX Generally, an index scale of 0 to 500 is used to assess the quality of air, and these numbers are synchronized with a corresponding descriptor word such as: Good, Moderate, Unhealthy for Sensitive Groups, Unhealthy,

and Very Unhealthy. To protect public health the EPA has set an AQI value of 100 to correspond to the NAAQS for the following criteria pollutants: Ozone (O_3), Sulfur Dioxide (SO₂), Carbon Monoxide (CO), Particulate Matter 10 (PM_{10}), Particulate Matter 2.5 ($PM_{2.5}$), and Nitrogen Dioxide (NO_2).

The AQI for a reporting region equates to the highest rating recorded for any pollutant within that region. Therefore, the larger the AQI value, the greater level of air pollution present, and the greater expectation of potential health concerns. However, this system only addresses air pollution in terms of acute health effects over time periods of 24 hours or less and does not provide an indication of chronic pollution exposure over months or years. Figure 40 shows how the recorded concentrations correspond to the AQI values, descriptors and health advisories. Each day the AQI values are available to the public through Georgia EPD's Ambient Air Monitoring website at http://amp.georgiaair.org/.

Maximum	Pollutant C	Concentratio	<u>n</u>						
PM _{2.5}	PM ₁₀	SO ₂	O ₃	O ₃	CO	NO ₂			
(24hr) µg/m³	(24hr) µg/m³	(1hr)* ppm	(8hr)^ ppm	(1hr) ppm	(8hr) ppm	(1hr) ppm	AQI Value	Descriptor	EPA Health Advisory
0.0– 12.0	0- 54	0- 0.035	0.000– 0.059	None	0.0– 4.4	0– 0.053	0 to 50	Good (green)	Air quality is considered satisfactory, and air pollution poses little or no risk.
12.1– 35.4	55– 154	0.036– 0.075	0.060– 0.075	None	4.5– 9.4	0.054- 0.100	51 to 100	Moderate (yellow)	Air quality is acceptable; however, for some pollutants there may be a moder- ate health concern for a very small number of people. For example, people who are unusually sensitive to the con- dition of the air may experience respira- tory symptoms.
35.5– 55.4	155 - 254	0.076 – 0.185	0.076 – 0.095	0.125 – 0.164	9.5– 12.4	0.101- 0.360	101 to 150	Unhealthy for Sensitive Groups	Members of sensitive groups (people with lung or heart disease) are at great- er risk from exposure to particle pollu- tion. Those with lung disease are at risk from exposure to ozone. The general public is not likely to be affected in this range.
55.5– 150.4	255– 354	0.186– 0.304*	0.096– 0.115	0.165– 0.204	12.5– 15.4	0.361- 0.649	151 to 200	Unhealthy (red)	Everyone may begin to experience health effects in this range. Members of sensitive groups may experience more serious health effects.
150.5– 250.4	355- 424	0.305– 0.604*	0.116- 0.374	0.205– 0.404	15.5– 30.4	0.650- 1.249	201 to 300	Very Un- healthy (purple)	AQI values in this range trigger a health alert. Everyone may experience more serious health effects. When the AQI is in this range because of ozone, most people should restrict their outdoor exertion to morning or late evening hours to avoid high ozone exposures.
250.5– 350.4	425- 504	0.605- 0.804*	None^	0.405 – 0.504	30.5- 40.4	1.250- 1.649	301 to 400	Hazardous	AQI values over 300 trigger health warnings of emergency conditions. The
350.5– 500	505– 604	0.805– 1.004*	None^	0.505– 0.604	40.5– 50.4	1.650– 2.049	401 to 500	(maroon)	entire population is more likely to be affected.

Figure 40. The AQI, *AQI values of 200 or greater are calculated with 24-hr SO₂ concentrations, ^AQI values of 301 or greater are calculated with 1-hr O₃ concentrations. **AQI numbers above 100 may not be equivalent to a violation of the standard

2016 AQI Values Summary for Georgia

		Air Quality Inde	ex Summary by CBS	6A		
			per of Days			
Pollutants Monitored in 2016	Good (0-50)	Moderate (51-100)	Unhealthy for Sensitive Groups (101-150)**	Unhealthy (151-200)**	Very Unheathy (201-300)**	Hazardous (>300)**
Albany			•			
PM _{2.5}	263	100		_	_	
Americus						
03	219	26	1	_		
Athens-Clark County						
O ₃ , PM _{2.5}	295	61	4	2		_
Atlanta-Sandy Springs-Roswell						
O ₃ , NO ₂ , PM _{2.5} , CO, SO ₂ , PM ₁₀	105	229	28	4		-
Augusta-Richmond County, GA-S	C					
O ₃ , PM _{2.5} , PM ₁₀	255	104	5	2	-	-
Brunswick						
O ₃ , PM _{2.5}	317	27	2	-	-	
Chattanooga, TN-GA						
O ₃ , PM _{2.5}	227	127	2	3	-	-
Columbus, GA-AL						
O ₃ , PM _{2.5}	264	95	5	-	-	
Dalton						
O ₃	223	40	1	-	-	-
General Coffee						
PM _{2.5}	21	2		-	-	-
Gainesville						
PM _{2.5}	103	14	1	1	-	-
Macon						
O ₃ , SO ₂ , PM _{2.5}	267	94	5	-	-	
Rome						
SO _{2,} PM _{2.5}	287	78	1	-	-	
Savannah						
O ₃ , SO ₂ , PM _{2.5}	304	59	3	-	-	
Summerville						
O ₃	221	25		-		-
Valdosta						
PM _{2.5}	276	51		-	_	
Warner Robins						
PM _{2.5}	306	44	2	-		
1112.5	300		2			

Table 1. 2016 AQI summary data, most days had an AQI value in the 'Good' (0-50) category for all the sites.

Atlanta-Sandy Springs-Roswell MSA

Figure 41 shows in more detail the AQI values for the Atlanta-Sandy Springs-Roswell MSA. There were 32 days with an AQI value above 100 in 2016. Ozone is a major driver of an elevated AQI and can be higher in the summer months due to increased sunlight. Higher ozone and PM_{2.5} concentrations are the primary sources of AQI values in the "Unhealthy for Sensitive Groups" category in the Atlanta-Sandy Springs-Roswell MSA.

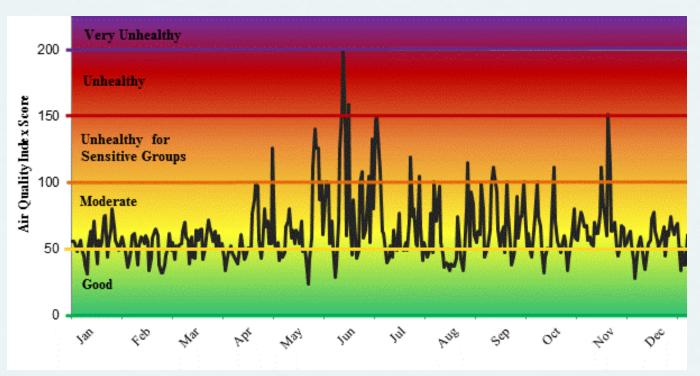


Figure 41. 2016 AQI Values for the Atlanta-Sandy Springs-Roswell MSA

PHOTOCHEMICAL ASSESSMENT MONITORING STATIONS (PAMS)

To better understand ozone formation, EPD monitors oxides of nitrogen, volatile organic compounds (VOCs), carbonyl compounds, and meteorological parameters at the PAMS site.

Isoprene, the tracer for VOCs emissions from vegetation, is by far the largest contributor to ozone formation at the PAMS site. It is naturally released in large quantities by conifer trees, which are very abundant in the Southeastern United States.

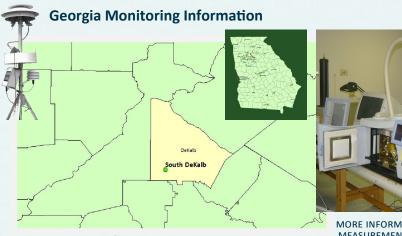
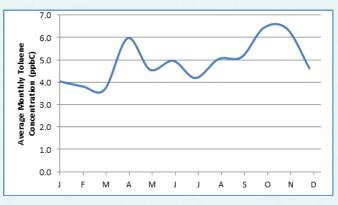


Figure 42. Georgia's PAMS monitoring site

(Figure 43).

MORE INFORMATION ABOUT MEASUREMENT TECHNIQUE

¹⁷https://www.perkinelmer.com/labsolutions/resources/docs/APP Analysis-of -VOCs-in-Air-Using-EPA-Method-TO-17-011909 01.pdf


Measurement Techniques

- Throughout the year, 24-hour volatile integrated organic compounds samples are taken with a canister every sixth day and analyzed in the EPD laboratory for 56 hydrocarbon compounds using a gas chromatograph with mass spectroscopy detection (GC/MS).
- Additionally, from June through August, hydrocarbon samples are analyzed hourly at the South DeKalb PAMS site using а gas chromatography unit with a Flame Ionization Detector (FID). 17

Toluene (generally the most abundant anthropogenic species in urban air) reaches the air from a variety of sources such as combustion of fossil fuels and evaporative emissions, motor vehicle fuel and is also used as a common solvent in many products such as paint. It is relatively constant throughout the year, suggesting a steady level of emissions year-round (Figure 44).

Carbonyl Compounds

Carbonyl compounds define a large group of organic compounds, which include acetaldehyde, acrolein, and formaldehyde. These compounds can lead to ozone formation.

Sources of carbonyl compounds include vehicle exhaust, cigarette smoke, paper production, stationary internal combustion engines and turbines, solvents, polymers, plastics, and the combustion of wood.

Depending on the amount inhaled, exposure to these compounds can cause irritation to the eyes, ears, nose, and throat, dizziness, and damage to the lungs.

res. St

Figure 45. Georgia's carbonyls monitoring sites

(mg/m3)

Concentration

Acrolein

Average

Carbonyls Total Averages (µg/m³) for 2016

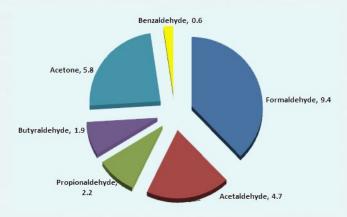


Figure 46. Total Average 24-hour carbonyl concentrations by species

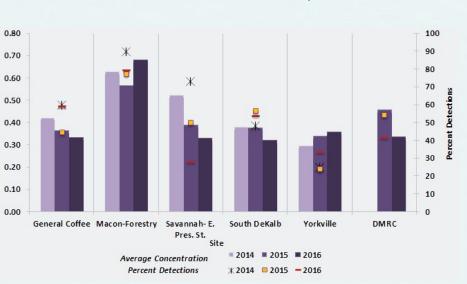


Figure 47. Acrolein concentrations and percent detections, 2014-2016

MORE INFORMATION ABOUT MEASUREMENT TECHNIQUES

¹⁸<u>http://www.atec-online.com/</u>

Measurement Techniques

The carbonyls are sampled with two types of methods.

- One method includes an absorbent cartridge filled with dinitrophenylhydrazine (DNPH), using High Performance Liquid Chromatography analysis. ¹⁸
- Another collection method is the canister sampler that is used for sampling volatile organic compounds at the Air Toxics sites. Acrolein is analyzed using this method. The graph to the right shows this data.

50

AIR TOXICS MONITORING

In order for EPD to expand the understanding of the quality of Georgia's air regarding ambient concentrations of hazardous air pollutants, EPD began state-sponsored air toxics monitoring activities.

Air Toxics are those pollutants that cause or may cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental and ecological effects.

Air toxic pollutants, or hazardous air pollutants (HAPs), are a group of air pollutants that have a wide variety of sources — mobile sources (such as vehicles), stationary industrial sources, small area sources, indoor sources (such as cleaning materials), and other environmental sources (such as volcanoes and wildfires). The lifetime, transportation, and make-up of these pollutants are affected by both weather (rain and wind) and landscape (mountains and valleys). In addition, some HAPs that are no longer used, but were commonly used in the past, can still be found in the environment today.

Negative effects on human health range from headaches, nausea, and dizziness to cancer, birth defects, problems breathing, and other serious illnesses. These effects can vary depending on frequency of exposure, length of exposure time, health of the person that is exposed, along with the toxicity of the compound.

People can be exposed to HAPs by breathing contaminated air, consuming food or water contaminated by air pollutants, or touching contaminated water or soil.

Some of the substances tend to have only one critical effect, while others may have several. Some of the effects may occur after a short exposure and others appear after long-term exposure, or many years after being exposed.

These air pollutants also affect the environment. Wildlife experience symptoms similar to those in humans and pollutants accumulate in the food chain. Many air pollutants can also be absorbed into waterways and have toxic effects on aquatic wildlife.

From the list of <u>187 HAPs compounds identified by EPA</u>, toxic compounds monitored include metals, volatile organic compounds, semi-volatile organic compounds, and carbonyl compounds.

Monitoring Techniques

Three types of samplers are used at all locations: the HIVOL, PUF, and canister. $^{\rm 19}$

- The HIVOL sampler collects quartz fiber filters that are subjected to a chemical digestion process and are analyzed on an inductively coupled plasma spectrometer.
- PUF (polyurethane foam) sampler is used for sampling semi-volatile organic compounds (SVOCs) —A multi-layer cartridge is prepared which collects both the particulate fraction and the volatile fraction of this group of compounds, analyzed using a gas chromatograph.
- The canister sampler for VOCs is analyzed using a gas chromatograph with mass spectroscopy detection (GC/MS).

MORE INFORMATION ABOUT MEASUREMENT TECHNIQUES

¹⁹https://tisch-env.com/high-volume-air-samplers/

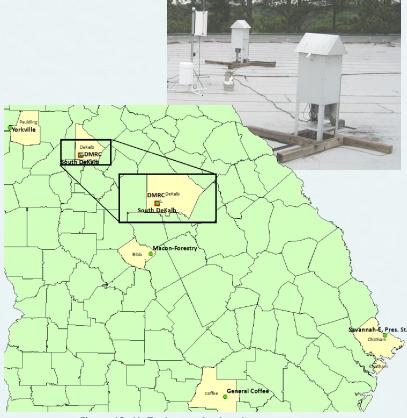
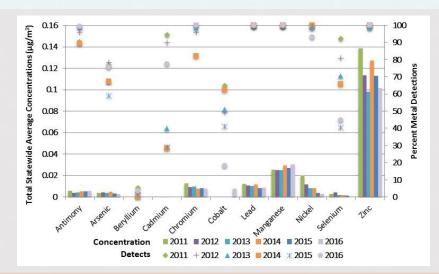
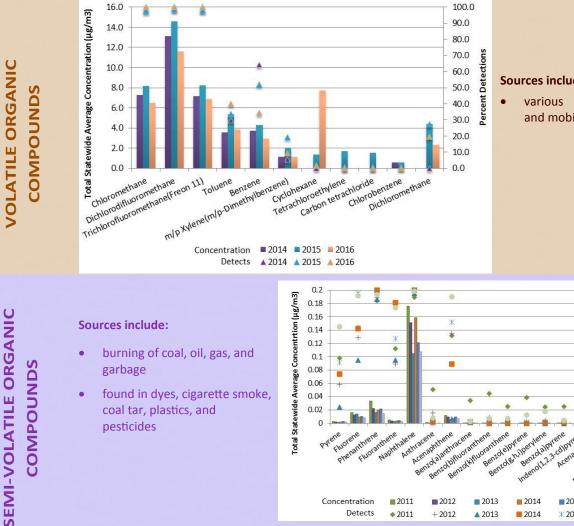


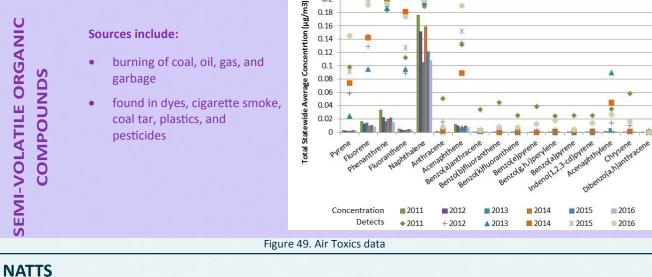
Figure 48. Air Toxics monitoring sites


R


Sources include:

- gasoline and diesel exhaust
- batteries
- soil and water
- burning coal
- emissions from iron and steel production
- lead smelters
- operation of iron and steel production plants
- by-product of mining and smelting sulfide ores
- used in industrial processes
- tires

METALS


- radioactive metal in radiotherapy
- photocells and solar panels

Sources include:

various industrial, stationary and mobile sources

The National Air Toxics Trends Station (NATTS) network was established in 2003 at the South DeKalb site and is intended for long-term operation for the purpose of discerning national trends.

- The NATTS Network consists of 27 sites nationwide, 20 urban and 7 rural.
- The South DeKalb site monitors the same compounds as other air toxics sites, as well as black carbon, and carbonyls. •
- As part of the NATTs network, metals are monitored on a PM₁₀ sampler at the South DeKalb site. The sample is • analyzed using inductively coupled plasma mass spectrometry (ICP-MS).

100

90

80

70

60

50

40

30

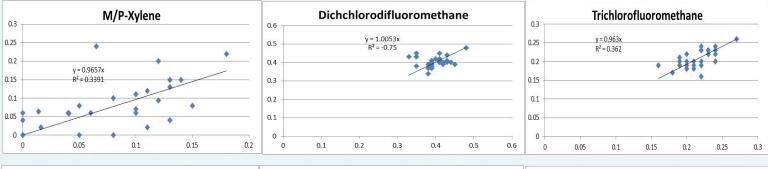
20

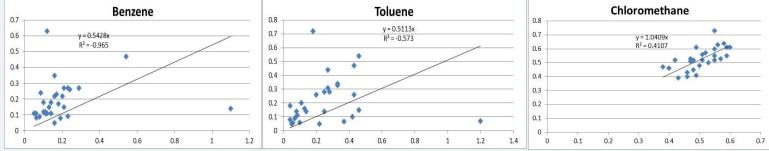
10

0

Percent Detection:

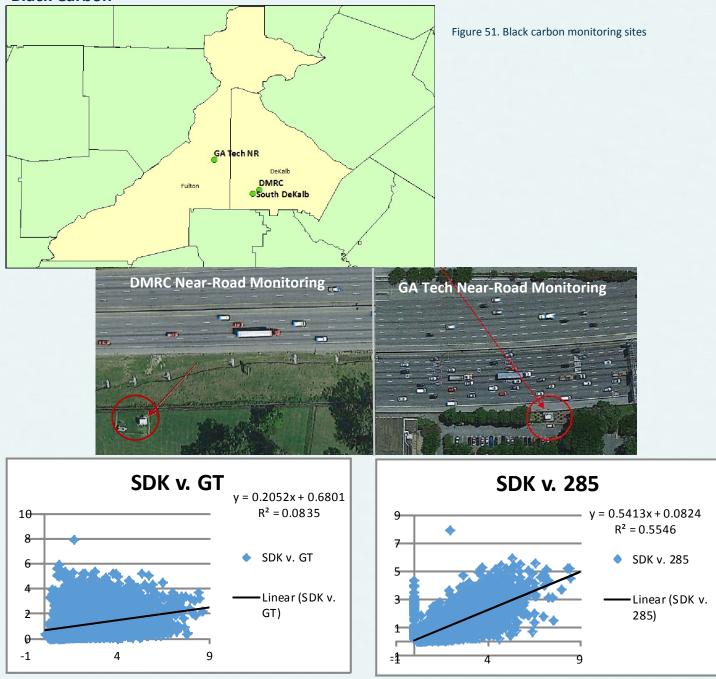
2016


0 2016


Near-Road VOCs

The DMRC site is set up as part of the Near-Road Monitoring Network and is located within 40 meters of I-285, a heavily traveled interstate. The South DeKalb site is approximately a mile away from the DMRC site and is located 580 meters from the same interstate.

The following scatterplots and correlations were created to compare select VOCs that had several pollutant detections at both the South DeKalb and DMRC sites.



voc	Correlation Coefficient (r)
Toluene	0.13398
M/P Xylene	0.61461
Chloromethane	
	0.65920
Trichlorofluoromethane	0.65446
	0.65416
Dicholrodifluoromethane	0.23494
Benzene	0.15000
	0.15009

A few of the VOCs at the South DeKalb and DMRC sites have relatively low correlations. This suggests that some VOCs found in vehicle exhaust dissipate quickly in the air.

Figure 50. Comparison of select VOCs at the South DeKalb and DMRC sites

Black Carbon

The black carbon scatterplots show a relatively high correlation (R^2 =0.5546) between the South DeKalb and DMRC sites. The scatterplots that include GA Tech have less correlation, (R^2 =0.0835 and 0.1739) which could be an indication of less truck diesel traffic (black carbon) in the downtown corridor versus the I-285 perimeter.

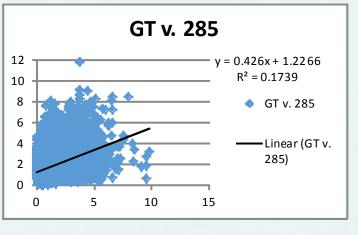


Figure 52. Comparison of black carbon at the South DeKalb, Georgia Tech, and DMRC sites

RISK ASSESSMENT

The following risk assessment reflects data collected at the Air Toxics Network (ATN) and the National Air Toxics Trends Station (NATTS). Some of the chemicals monitored in the ATN are also monitored at Photochemical Assessment Monitoring Stations (PAMS); therefore, those chemicals were evaluated and compared to concentrations measured at nearby ATN sites for this report.

To put into perspective the risks from environmental hazards, the continuum below presents risk statistics for some familiar events. Risk analysts describe cancer risks numerically in scientific notation, for example $1 \times 10[-5]$, 1×10^{-5} or 1.00E-05, which means that there is one chance in 100,000 of an event occurring. It is important to note that these risk statistics are population averages, while risk analysts usually estimate risk to the maximum exposed individual. Additionally, it should be noted that these risk values are considered additional risk. That is, risk above the normal background risk from exposure in everyday life.

Methods

The initial evaluation consisted of a comparison of the monitored results to "health based" screening values. These values were calculated using procedures recommended in EPA's latest guidance on risk assessment for air toxics, 'A Preliminary Risk-Based Screening Approach for Air Toxics Monitoring Data Sets' (https://archive.org/details/ APreliminaryRisk-basedScreeningApproachForAirToxicsMonitoringDataSets). Briefly, EPA's prioritized chronic doseresponse (toxicity) values for both non-cancer (reference concentrations, RfC) and cancer (inhalation unit risks, IUR) effects were used to generate screening air concentrations. To screen for non-cancer effects, the reference concentration was used as a starting point. However, to account for possible exposure to multiple contaminants acting on the same target organ or body system, the screening air concentration was obtained by dividing the RfC by a factor of 10. Screening values for the cancer endpoint were determined by calculating air concentrations equivalent to a risk level of one in one million. Most screening values utilized in this assessment are listed in Appendix A of the above mentioned guidance document and updated "Table 1. Prioritized Chronic Dose-Response Values for Screening Risk Assessments (5/09/2014)" (https://www.epa.gov/sites/production/files/2014-05/ documents/table1.pdf). The screening values are derived from the dose-response values: cancer-based air screening values=1E-06/IUR and non-cancer based air screening values=RfC x 0.1 x 1000. For a limited number of chemicals, other resources such as toxicity values from the Regional Screening Table (https://www.epa.gov/risk/ regional-screening-levels-rsls-generic-tables-june-2017) were used to calculate conservative screening values protective of a worse-case residential exposure scenario. Assumptions were made that accounted for the potential for continuous exposure to air toxics for 24 hours per day for 70 years. The conservative screening process was utilized so that the chance of underestimating the potential for health impacts would be minimized, as chemicals were excluded from further quantitative analysis. The following figure shows the formulas used to calculate cancer risk and non-cancer hazard for chemicals that were carried beyond the screening process into the quantitative assessment.

Formula for Calculating Risk Using IUR for Carcinogens: Risk = IUR * ConcFormula for Calculating Hazard Quotient Using RfC for Noncarcinogens: $HQ = \frac{Conc}{RfC}$ Equation Parameters: Risk: Theoretical lifetime cancer risk (unitless probability) HQ: Hazard quotient (unitless ratio) Conc: Measured ambient air concentration in µg/m³ IUR: Inhalation unit risk (1/(µg/m³)) RfC: Reference concentration (µg/m³)

Results and Interpretation

Seventy-one (71) air toxic chemicals were assessed at six sites in Georgia. Out of these 71 air toxic chemicals, nine (9) were found to be above the screening values. Table 2 shows the theoretical cancer risk and non-cancer hazard that would result from an individual breathing air containing the detected chemicals at the estimated concentrations daily for 70 years, or a full lifetime. These cancer risk and hazard quotient estimates are likely conservative because they were calculated assuming continuous exposure to outdoor air at breathing rates typical of moderate exertion. Real risk cannot be calculated, but may be substantially lower. Lifetime cancer risks for the limited number of chemicals exceeding screening values exceeded 1×10^{-6} or one in one million, a value generally deemed as insignificant. However, lifetime cancer risks for these chemicals did not exceed 2×10^{-5} or two in one-hundred thousand. This risk estimate falls within EPA's acceptable cancer risk range of 1×10^{-6} to 1×10^{-4} commonly used for regulatory decision making.

In contrast to cancer risks, non-cancer hazards are not expressed as a probability of an individual suffering an adverse effect. Instead, the non-cancer hazard to individuals is expressed in terms of a ratio defined as the hazard quotient (HQ). These HQ values relate daily exposure concentrations, or dose, to a concentration or an amount thought to be without appreciable risks of causing deleterious non-cancer effects in sensitive individuals as well as the general population. HQ values less than 1.0 indicate the air "dose" is less than the threshold dose required to cause toxic effects other than cancer.

Site	Chemical	CAS #	Annual Average (μg/m ³)	Detection Frequency	Cancer Risk	Hazard Quotient
	Arsenic	7440-38-2	5.9E-04	22/29	3.E-06	0.04
	Chromium	18540-29-9	1.4E-03	29/29	1.E-05	0.01
Macon-Forestry Savannah-E. Pres. St. General Coffee	Benzene	71-43-2	4.2E-01	7/29	3.E-06	0.01
	1,3 Butadiene	106-99-0	2.9E-01	1/29	9.E-06	0.1
	Acrolein	107-02-8	6.8E-01	23/29	N/A	34
	Arsenic	7440-38-2	4.8E-04	24/30	2.E-06	0.03
	Chromium	18540-29-9	1.7E-03	30/30	1.E-05	0.02
Savannah-E. Pres. St.	Acrolein	107-02-8	3.3E-01	7/25	N/A	17
	Bromomethane	74-83-9	5.9E-01	3/25	N/A	0.1
	Benzene	71-43-2	4.5E-01	6/25	4.E-06	0.01
General Coffee	Arsenic	7440-38-2	3.7E-04	15/28	2.E-06	0.02
	Chromium	18540-29-9	1.2E-03	28/28	1.E-05	0.01
	Benzene	71-43-2	4.2E-01	2/22	3.E-06	0.01
	Acrolein	107-02-8	3.3E-01	13/22	N/A	17
	Arsenic	7440-38-2	5.9E-04	49/61	3.E-06	0.04
	Chromium	18540-29-9	1.8E-03	61/61	2.E-05	0.02
General Coffee South DeKalb	Acrolein	107-02-8	3.2E-01	20/60	N/A	16
	Benzene	71-43-2	5.9E-01	32/60	5.E-06	0.02
	Arsenic	7440-38-2	8.0E-04	24/29	3.E-06	0.05
Yorkville	Chromium	18540-29-9	1.9E-03	29/29	2.E-05	0.02
	Acrolein	107-02-8	3.6E-01	15/28	N/A	18
	Benzene	71-43-2	4.2E-01	2/28	3.E-06	0.01
DMPC	Benzene	71-43-2	6.5E-01	17/29	5.E-06	0.02
	Acrolein	107-02-8	3.4E-01	12/29	N/A	17

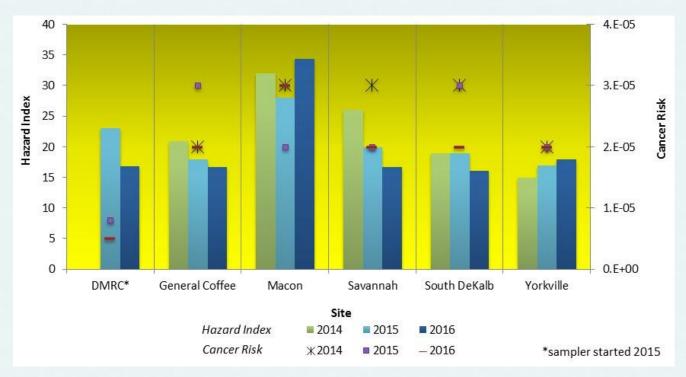

CAS # is Chemical Abstracts Services number for each compound, which is a specific way to identify each compound.

Table 2. Site-specific detection frequency, mean concentration, cancer risk, and hazard quotient by location for chemicals that exceeded their screening values in 2016.

Site	Aggregate Cancer Risk	Hazard Index				
Macon-Forestry	3.E-05	34				
Savannah-E. Pres. St.	3.E-05	17				
General Coffee	2.E-05	17				
DMRC	5.E-06	17				
South DeKalb	2.E-05	16				
Yorkville	2.E-05	18				

Table 3. Aggregate cancer risk and hazard index by site for 2016.

Figure 53 is a graphical representation of the data in Table 3, and it is also used to display the comparison between the previous two consecutive years of hazard indices and their respective cancer risks.

The screening values utilized in this assessment are listed in Appendix B.

Figure 53. Aggregate cancer risk and hazard index by site for 2014-2016

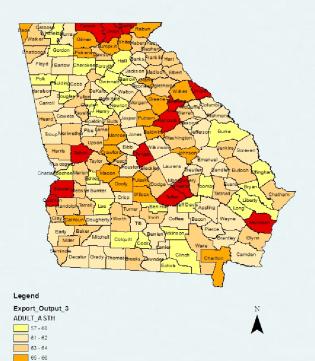
The following table shows the summary information for the PAMS site. Of the chemicals that are evaluated in conjunction with the Air Toxics data, benzene and ethylbenzene were two chemicals found above the screening value at this site.

Site	Chemical	CAS #	Detection Fre- quency 61/61	1st Max	2nd Max	Annual Average	Hazard Quotient	Cancer Risk
Couth DoKalh	Benzene	71-43-2	61/61	13.4	12.1	3.8	0.1	3.E-05
South DeKalb	Ethylbenzene	100-41-4	39/61	4.8	4.8	1.5	1	4.E-06

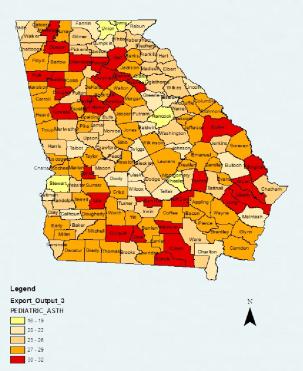
Table 4. Detection frequency, 1st and 2nd maximums, mean, cancer risks, and hazard quotients for VOCs from the PAMs site which exceeded their screening levels in 2016.

There are three air monitoring sites in Georgia that collect carbonyls data in 2016, as discussed earlier. The risk assessment for this data is summarized in the following table.

Site	Chemical	CAS #	Annual Average (µg/m³)	Detection Frequency	Cancer Risk	Hazard Quotient
Covenada	Acetaldehyde	75-07-0	1.6	23/30	4.E-06	0.2
Savannah	Formaldehyde	50-00-0	3.5	30/30	5.E-05	0.4
Verleville	Acetaldehyde	75-07-0	2.0	28/30	4.E-06	0.2
Yorkville	Formaldehyde	50-00-0	4.4	28/30	6.E-05	0.4
	Acetaldehyde	75-07-0	1.1	27/27	2.E-06	0.1
South DeKalb	Propionaldehyde	123-83-6	0.8	4/27	N/A	0.1
	Formaldehyde	50-00-0	1.5	26/26	2.E-05	0.1

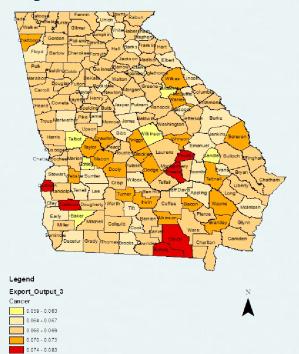

Table 5. Detection frequency, mean, cancer risks, and hazard quotients for carbonyls which exceeded their screening levels in 2016.

This report summarizes the concentrations measured and associated cancer risk and hazard quotient as detailed above. For specific questions regarding public health, please contact:


Franklin Sanchez, REHS

Director Chemical Hazards Program Environmental Health Georgia Department of Public Health 2 Peachtree Street NW, 13th Floor Atlanta, GA 30303-3142 404.657.6534 Fax: 404.657.6516 Franklin.Sanchez@dph.ga.gov The maps included on the following page show the estimated rate of lung related diseases per county in Georgia. This is based on data obtained from the American Lung Association's 'Estimated Prevalence and Incidence of Lung Disease' (<u>http://www.lung.org/assets/documents/research/estimated-prevalence.pdf</u>). These rates are mapped as the number of estimated lung related disease cases per 1000 or 100 people in each county, based on 2012 data.

Adult Asthma Rate Per 1000



Pediatric Asthma Rate Per 1000

Lung Cancer Rate Per 100

67 - 70

COPD Rate Per 1000

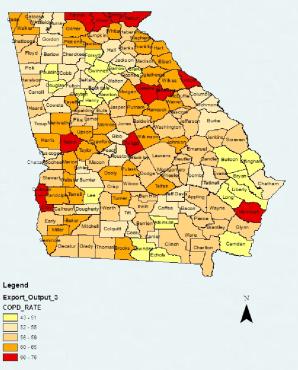


Figure 54. Estimated incidence of lung related diseases in Georgia

METEOROLOGICAL REPORT

State Climatology and Meteorological Summary of 2016

- The climate across North and Central Georgia varies based on a variety of factors, the most prominent of which is terrain.
- The Gulf of Mexico and the Atlantic Ocean are the two nearby maritime bodies that exert an important influence on the North Georgia climate, acting as major sources of moisture support.
- A complete suite of meteorological instrumentation is used to characterize meteorological conditions around metropolitan Atlanta. See Appendix C for details.

Figure 55. Meteorological Site Map

Figure 56. Sample meteorological instrumentation at EPD sites: a) ceilometer, b) sonic anemometer, c) Temperature probe and relative humidity monitor, d) tipping bucket

Meteorological Measurements for 2016

- The majority of locations in North and Central Georgia were much warmer than normal and drier than normal during 2016.
- A winter weather event impacted much of North Georgia from January 22nd through January 23rd, with light snow accumulations as far as south central Georgia.
- Several locations experienced record, or near-record, seasonal summer temperatures. Atlanta also experienced the 1st warmest Fall on record.

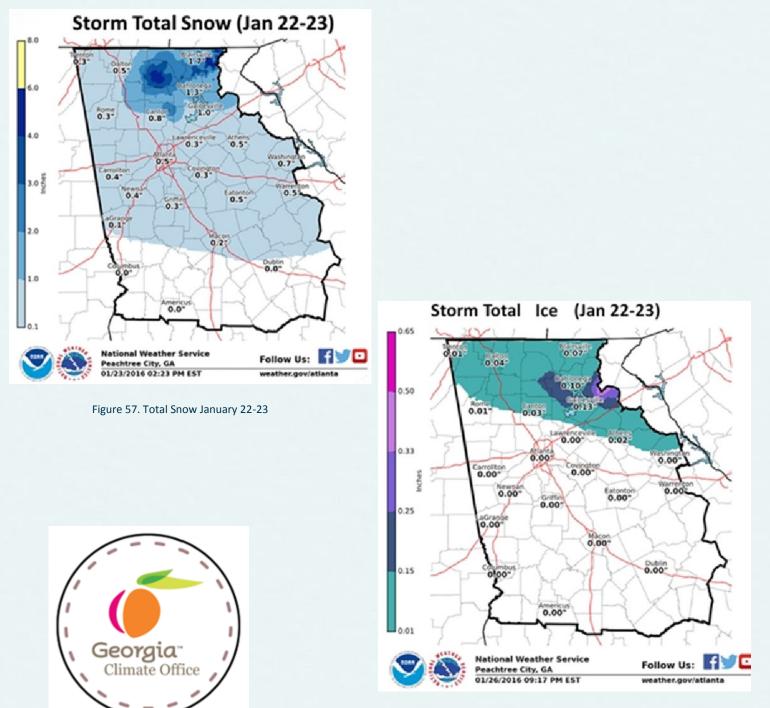


Figure 58. Total Ice January 22-23

For more information regarding the Georgia Climate Office, see <u>https://epd.georgia.gov/office-state-climatologist</u>.

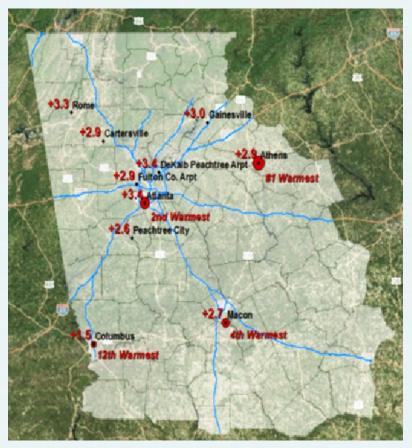


Figure 59. Seasonal Avg. Temperature (°F) and Rankings for Jun-Aug (National Weather Service at Peachtree City)

Site	Avg. Temp. and Current Ranking	Normal	Dep. from Normal	Previous Records
Athens	67.4 (2nd Warmest)	63.4	+4.0	69.4 (1931)
Atlanta	69.1 (#1 Warmest)	63.6	+5.5	67.8 (1931)
Columbus	70.3 (5th Warmest)	66.8	+3.5	72.1 (1919)
Macon	68.6 (4th Warmest)	65.3	+3.3	69.4 (1985)
Cartersville	65.9	61.1	+4.8	
DeKalb Peachtree Arpt	66.8	62.5	+4.3	
Fulton Co. Arpt	66.6	62.8	+3.8	
Gainesville	66.7	62.0	+4.7	
Peachtree City	65.9	62.1	+3.5	
Rome	66.6	61.3	+5.3	

Figure 60. Seasonal Avg. Temperature (°F) and Rankings for Sept. – Nov. (National Weather Service at Peachtree City)

Drought Conditions for Georgia

- The Northeast Alabama, Northwest Georgia, and Southern Tennessee core drought area started showing noticeable rainfall deficits in March 2016.
- East Central Georgia saw rapidly degrading conditions in early summer 2016.
- A newer core emerged south of Macon area that began in early fall 2016, and expanded towards south Georgia along I-75, and along the Alabama/Georgia border.
- Drought led to North Georgia wildfire activity and air quality issues in mid-November 2016.

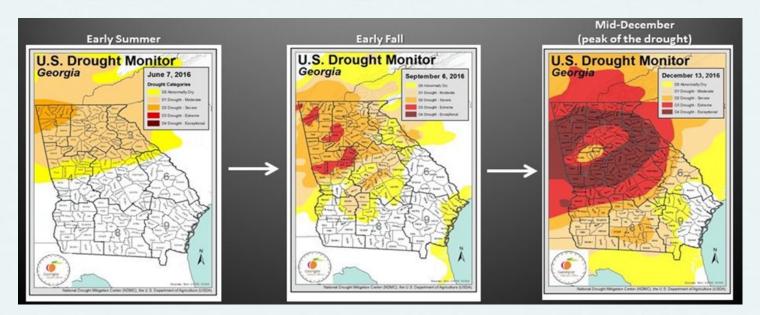


Figure 61. Drought Conditions in Georgia

Agricultural Impacts

Agricultural impacts were widespread and devastating to farmers, who described extremely dry pastures, bringing in hay from out of state with no second cutting, losing their entire corn crop and feeding it to livestock, noticing ribs showing on lactating cows, and inability to plant winter grazing.

Air Quality Forecasting Statistics

Table 6: Observed Air Quality

		Observed # of Days in AQI Category										
Metro Area and Pollutant	Total # of days in record	Good	Moderate	Unhealthy for Sensitive Groups	Unhealthy							
Atlanta Ozone	214	101	84	26	3							
Macon Ozone	181	147	31	3	0							
Atlanta PM _{2.5}	343	169	171	3	0							
Columbus PM _{2.5}	322	278	43	1	0							

Note: Total number of days in record based on AirNow data for observed measurements.

Table 7: Predicted Air Quality

	Hits	Misses	False Alarms	Bias	Gross Error	Correlation (-1 to +1)	% Accurate 2 categories	% Accurate 5 categories
Atlanta Ozone	12	17	10	1.6 ppbv	7.6 ppbv	0.65	87	63
Macon Ozone	1	2	1	3.8 ppbv	7.3 ppbv	0.70	98	80
Atlanta PM _{2.5}	1	2	1	0.2 mg/ m ³	2.7 mg/ m ³	0.47	99	72
Columbus PM _{2.5}	0	1	0	1.0 mg/ m ³	2.8 mg/ m ³	0.48	99+	87

Notes:

Hits are the number of days on which an observed exceedance of the daily NAAQS was correctly predicted.

Misses are the number of days on which an observed exceedance of the daily NAAQS was not predicted.

False Alarms are the number of days on which an exceedance of the daily NAAQS was predicted, but was not later observed.

Bias is the average tendency to over-predict (positive bias) or under-predict (negative bias) the observed pollutant concentration.

Gross Error is the average absolute error of the predictions relative to the observations.

- Correlation is a measure of the ability to predict the relative change in observed concentrations. Higher positive correlation implies that the predictions are accurately anticipating changes in the observed concentrations.
- % Accurate 2 categories is the percentage of days when the forecast prediction correctly matched the observation for the "no smog alert" / "smog alert" condition (i.e. 2 categories).
- % Accurate 5 categories is the percentage of days when the forecast prediction correctly matched the observation for five categories of the Air Quality Index (Good, Moderate, Unhealthy for Sensitive Groups, Unhealthy, and Very Unhealthy).

Observed and Predicted Air Quality:

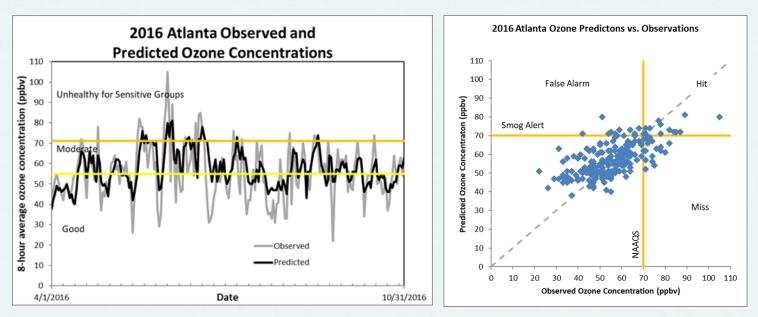


Figure 62. Atlanta observed and predicted ozone, 2016

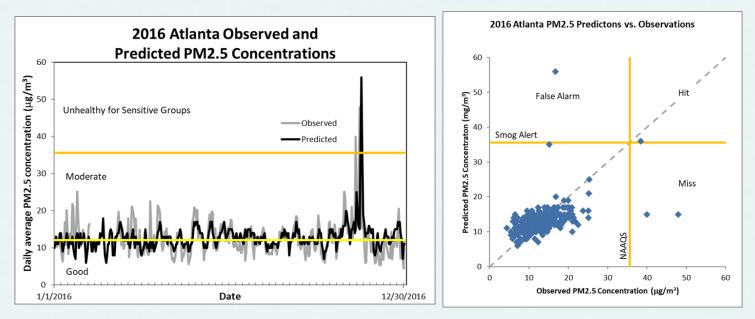


Figure 63. Atlanta observed and predicted PM_{2.5}, 2016

Observed and Predicted Air Quality:

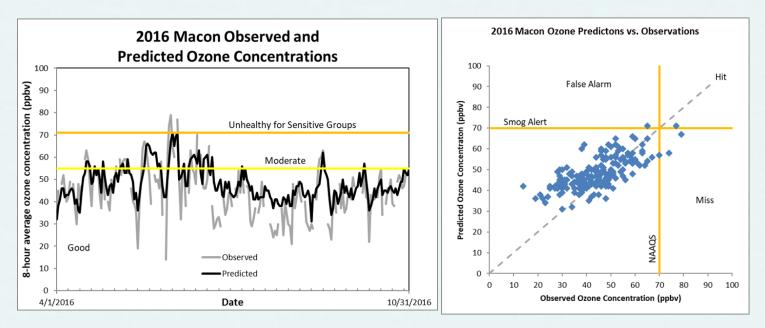


Figure 64. Macon observed and predicted ozone, 2016

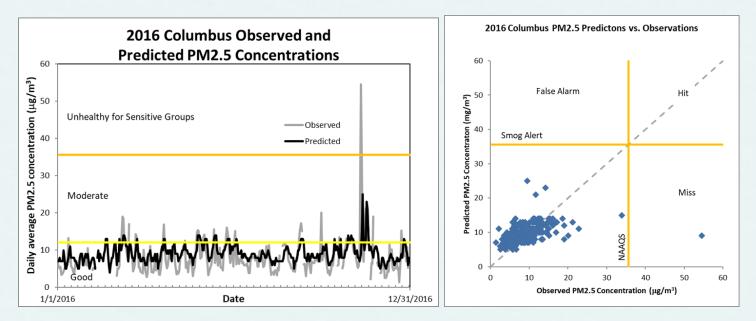
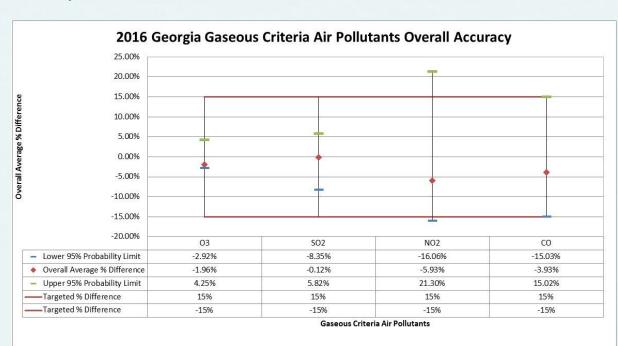


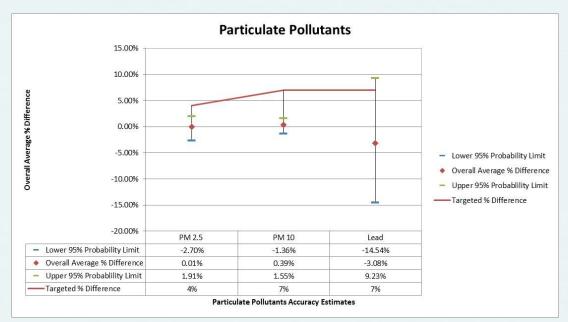
Figure 65. Columbus observed and predicted $PM_{2.5}$, 2016

Quality Assurance/Quality Control Program

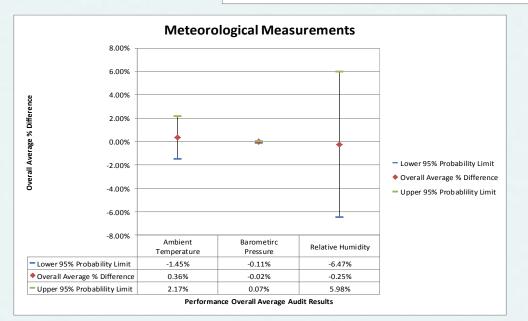
The purpose of the QA/QC Program is to assure the quality of data from EPD's air monitoring network. The GA EPD meets or exceeds the QA requirements defined in 40 CFR 58 and all applicable appendices. With the QA Program, GA EPD independently challenges the ambient air monitors to ensure they meet the requirements of 40 CFR 58.


The QA/QC program includes but is not limited to the following activities:

- Instruments performance audits
- Monitor siting evaluations
- Precision and span checks
- Bias determination
- Flow rate determination
- Leak checks
- Data validation


For additional independent quality assurance activities, the EPD participates in EPA's National Performance Audit Program (NPAP) and Performance Evaluation Program (PEP) for criteria pollutants. EPD's samplers are compared on a national basis through these independent audits.


As the Primary Quality Assurance Program for ambient air monitoring activities in Georgia, the Ambient Monitoring Program operates under an EPA approved Quality Management Plan and utilizes Quality Assurance Project Plans (QAPPs) for each state wide monitoring network. The primary purpose of the QAPP is to provide an overview of the project, describe the need for the measurements and define QA/QC activities to be applied to the project. All other ambient air monitoring initiatives, including state and industrial projects, must have an approved monitoring plan for each specific project.



Accuracy Levels

Accuracy Levels

2016 Ambient Air Surveillance Report

Appendix Section

Appendix A: Georgia Air Monitoring Network

																					Disels	
					PM _{2.5}	PM _{2.5}	PM _{2.5}	РМ							PM ₁₀	PAMS			Carb-		Black Car-	
SITE ID	Site Name	COUNTY	O ₃	СО	FRM	Cont.	Spec.	Coarse	NOx	NO ₂	NOy	SO ₂	Pb	PM ₁₀	Cont.	VOC	VOC	SVOC	onyls	Met	bon	als
Rome MSA			1			1						1		1	1	1	1	1			1	
131150003	Rome	Floyd			S	S	Х					S										
Brunswick MS	A				-	-	-	-	-	-	-	•	1	-	-	-		-	ī	-		
131270006	Brunswick	Glynn	S		S															NR		
Valdosta MSA			1			1						1		1		1		1			1	
131850003	Valdosta	Lowndes			S	S																
Warner Robin	s MSA		1	1			1	1			-	1			1			-		r		
131530001	Warner Rob-	Houston			S	S																
Dalton MSA			1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	
132130003	Fort Moun-	Murray	S																	NR		
Albany MSA					1		1	1	1	1	1							1	1			_
130950007	Albany	Dougherty			S	S																L
Gainesville MS					r		<u>r</u>	<u>r</u>	1	1	1		1		r –					r		
131390003	Gainesville	Hall			S	S																L
Athens-Clark (1		r		1	r	1	1	r	1	1		r –					r –		
130590002	Athens	Clarke	S		S	S	Х															L
Macon MSA			1	1		1	1	1				1		1	1	1	1	1	1		1	
130210007	Macon-Allied	Bibb			S		х															
130210012	Macon-	Bibb	s		S	S						S					NR	NR		NR		NR
	orgia- Alabama					5																1
columbus dec	Columbus-	MISA		1	1		1		1	1	1	1								1		T
132150001	Health Dept.	Muscogee			S																	
132150008	Columbus-	Muscogee	S		S	S			_													
132150009	Columbus-	Muscogee											S									
	Columbus-Ft.																					
132150010	Benning	Muscogee											S									_
132150011	Columbus-	Muscogee			S		Х						S									_
	Columbus-																					
132151003	Crime Lab	Muscogee																		NR		L
Savannah MS	4		1	1	1		1	1	1	1	1	1	1					1		r		
	Savannah-E.																					
130510021	President St.	Chatham	s									s					NR	NR	NR	NR		NR
100010021	i i condente oti	onachan	-																			
130510091	Savannah-	Chatham			s																	
					-																	
130511002	Savannah-	Chatham				S						s								NR		
	gia-South Caro																					
130730001	Evans	Columbia	S																	NR		
132450091	Augusta	Richmond	s	1	S	S	х					S		S						NR		1

Monitoring Types: S=SLAMS; P=PAMS; C=NCore; X=Supplemental Speciation; T=STN; N=NATTS; R=Near-Road; NR=Non-Regulatory; A=CASTNET

					PM _{2.5}	PM _{2.5}	PM _{2.5}	PM	NO/						PM ₁₀	PAMS			Carb-		Black	Met
SITE ID	Site Name	COUNTY	O ₃	со	FRM	Cont.	Spec.	Coarse	NOx	NO ₂	NOy	SO ₂	Pb	PM ₁₀	Cont		voc	svoc	onyls	Met	Car-	als
Atlanta-Sandy Springs-Roswell MSA																						
130630091	Forest Park	Clayton			S		=															
130670003	Kennesaw	Cobb	s		S																	
130770002	Newnan	Coweta	s			S														NR		
130850001	Dawsonville	Dawson	s																	NR		
130890002	South DeK- alb	DeKalb	S/	S/ P/C	S/C	S/C	T/C	С	S/P	S/P	S/P/ C	с			с	Р	N	N	P/N	Р	N	N
130890003	DMRC	DeKalb							R	R			S				R				R	
130970004	Douglasville	Douglas	s																	NR		
131210039	Fire Station	Fulton			S									S								
131210055	Confederate	Fulton	S			S						S								NR		
131210056	GA Tech- Near Road	Fulton		R	R				R	R										R	R	
131350002	Gwinnett	Gwinnett	S		S	S																
131510002	McDonough	Henry	S			S																
132230003	Yorkville	Paulding	S/P	S/P	S	S											NR	NR	NR	Р		NR
132319991	EPA CAST-	Pike	А																			
132470001	Conyers	Rockdale	S/P																	Ρ		
Chattanooga Tennessee-Georgia MSA														1								
132950002	Rossville	Walker			S	S	х															
Not In An MSA																						
130550001	Summerville	Chattooga	S																			
130690002	General	Coffee					х										NR	NR				NR
132611001	Leslie	Sumter	S																			
133030001	Sandersville	Washing-			S																	
133190001	Gordon	Wilkinson			S																	

Appendix A: Georgia Air Monitoring Network (continued)

Monitoring Types: S=SLAMS; P=PAMS; C=NCore; X=Supplemental Speciation; T=STN; N=NATTS; R=Near-Road; NR=Non-Regulatory; A=CASTNET

Appendix B: Air Toxics Compounds Monitored and Risk Assessment Screening Values used in Initial Assessment

CAS #	Chemical	Screen Value (μg/m³)	CAS #	Chemical	Screen Value (μg/m³)
	Metals				
7440-36-0	Antimony	0.02	7440-48-4	Cobalt	0.01
7440-38-2	Arsenic	0.00023	7439-92-1	Lead	0.15
7440-41-7	Beryllium	0.00042	7439-96-5	Manganese	0.3
7440-43-9	Cadmium	0.00056	7440-02-0	Nickel	0.0021
18540-29-9	Chromium**	0.000012	7782-49-2	Selenium	2
	6 · · · · · · · · ·		7440-66-6	Zinc	N/A
02.22.0	Semi-Volatiles	0.2	27200 27 2	Cuele nemte/cd/m/mene	N1 / A
83-32-9	Acenaphthene	0.3 0.3	27208-37-3	Cyclopenta(cd)pyrene	N/A 0.00083
208-96-8	Acenaphthylene	0.3	53-70-3	Dibenzo(a,h)anthracene Fluoranthene	
120-12-7	Anthracene	0.3	206-44-0	Fluorene	0.3 0.3
56-55-3	Benzo(a)anthracene		86-73-7		
205-99-2	Benzo(b)fluoranthene	0.0091	193-39-5	Indeno(1,2,3-c,d)pyrene	0.0091
207-08-9	Benzo(k)fluoranthene	0.0091	91-20-3	Naphthalene	0.3***
191-24-2	Benzo(g,h,i)perylene	0.3	85-01-8	Phenanthrene	0.3
50-32-8	Benzo(a)pyrene	0.00091	198-55-0	Perylene	N/A
192-97-2	Benzo(e)pyrene	0.3	129-00-0	Pyrene	0.3
218-01-9	Chrysene	0.091			
74 40 0	Volatile Organic Compounds Benzene	0.13	109 29 2/106 42 2	3 1,3 and 1,4-Dimethylbenzene (m/p-Xylene)	10
71-43-2	Benzenecarbonal (Benzaldehyde)	0.15 N/A		Ethanal (Acetaldehyde)	0.45
100-52-7 100-44-7	Benzyl chloride	0.02	75-07-0 100-41-4	Ethylbenzene	0.4
74-83-9	Bromomethane (Methyl bromide)	0.5	100-41-4	Ethenylbenzene (Styrene)	100
106-99-0	1,3-Butadiene	0.03	622-97-9	Benzene,1-ethenyl-4-methyl (p-Ethyltoluene)	N/A
123-72-8	Butanal (Butyraldehyde)	N/A	76-13-1	Freon 113	N/A
123-72-8	Chlorobenzene (Phenyl chloride)	100	87-68-3	Hexachloro-1,3-Butadiene(Hexachlorobutadiene)	0.045
75-00-3	Chloroethane (Ethyl chloride)	1000	110-54-3	n-Hexane	70
75-01-4	Chloroethene (Vinyl chloride)	0.11	50-00-0	Methanal (Formaldehyde)	0.0769
74-87-3	Chloromethane (Methyl chloride)	9.0	108-88-3	Methylbenzene/Phenylmethane (Toluene)	40
110-82-7	Cyclohexane	6300*	123-38-6	Propanal (Propionaldehyde)	0.8
106-93-4	1,2-Dibromoethane (Ethylene dibromide)	0.002	67-64-1	2-Propanone (Acetone)	32000*
95-50-1	1,2-Dichlorobenzene	210*	107-02-8	Propenal (Acrolein)	0.002
541-73-1	1,3-Dichlorobenzene	N/A	79-34-5	1,1,2,2-Tetrachloroethane	0.017
106-46-7	1,4-Dichlorobenzene	0.091	127-18-4	Tetrachloroethene (Perchloroethylene)	3.846
75-71-8	Dichlorodifluoromethane (Freon 12)	100*	56-23-5	Tetrachlormethane (Carbon tetrachloride)	0.17
75-34-3	1,1-Dichloroethane (Ethylidene chloride)	0.63	120-82-1	1,2,4-Trichlorobenzene	20
156-59-2	cis-1,2-Dichloroethene	N/A	526-73-8	1,2,3-Trimethylbenzene	63*
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	210*	95-63-6	1,2,4-Trimethylbenzene	63*
75-09-2	Dichloromethane (Methylene chloride)	100	108-67-8	1,3,5-Trimethylbenzene	N/A
78-87-5	1,2-Dichloropropane (Propylene dichloride)	0.076*	71-55-6	1,1,1-Trichloroethane (Methyl chloroform)	5000
10061-01-5	cis-1,3-Dichloropropene	N/A	79-00-5	1,1,2-Trichloroethane	0.063
10061-02-6	trans-1,3-Dichloropropene	N/A	79-01-6	Trichloroethene (Trichloroethylene)	0.244
76-14-2	1,1-Dichloro-1,2,2,2-tetrafluoroethane(Freon114)	N/A	75-69-4	Trichlorofluoromethane (Freon 11)	N/A*
95-47-6	1,2-Dimethylbenzene (o-Xylene)	10	67-66-3	Trichloromethane (Chloroform)	9.8

Sources: 'A Preliminary Risk-Based Screening Approach for Air Toxics Monitoring Data Sets' (U.S. EPA, 2010)(https://archive.org/details/ APreliminaryRisk-basedScreeningApproachForAirToxicsMonitoringDataSets), "Table 1. Prioritized Chronic Dose-Response Values for Screening Risk Assessments (5/09/2014)(https://www.epa.gov/sites/production/files/2014-05/documents/table1.pdf)."

*Regional Screening Table (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-june-2017)

**Chromium is a ratio of the total chromium value.

***Naphthalene: 1 in 10,000 uncertainty in IUR; therefore IUR not used in developing screening value.

Appendix C: Meteorological	Instruments used in 2016
----------------------------	--------------------------

										L	.OCA	TION	J						
PARAMETER	COM- PANY	INSTRUMENT	MODEL	A u g u s t a	B r u s w ic k	C I C I L a b	C o f A v e	C o y e r s	D a v s o n v il I e	S D K a I b	S a V P r e s	Y o r k v il I e	M c n S E	D u g l a s v il l e	N e n a n	F t. M t n	E V a s	N R - G T	Sav L&A
Wind Speed/Wind	R.M.	Ultrasonic Ane-	81000	х	х	х		х	х	х	х	х		х	х			х	х
Direction	Young R.M. Young	mometer Ultrasonic Ane- mometer	85000				х						х			х	х		
Ambient Tempera-	R.M. Young	TEMP/RH Probe	41375V C	х		х						х				х			
ture/ Relative Hu- midity	R.M. Young	TEMP/RH SENSOR, DEG C	41382V C					х		х	х						х		
Barometric Pressure	R.M. Young	Barometric Pres- sure Sensor	61201	х				х				х							
barometric Pressure	R.M. Young	Barometric Pres- sure Sensor	61302V			х				х	х								
Precipitation	No- valynx	Tipping Bucket Rain Gauge	260- 2501	х		х		х		x		х							
Solar Radiation	Eppley Lab	Standard Precision Pyronometer	PSP/ SPP					х				х							
Total Ultraviolet Radiation	Eppley Lab	Total Ultraviolet Radiometer	TUVR					x				х							
Dette la second	ESC	Data System Con- troller	8832	х	х		х	х	х	х	х	х	х	х	х	х	х	х	х
Data Logger	ESC	Data System Con- troller	8816			х													
Towers	Aluma Tower Inc.	Crank-Up Tower	T-135	х	х	х	х	х		x	х	х	x	х	х			х	x
Towers	Aluma Tower Inc.	Fold-Over Tower	FOT-10						х							х	х		

Appendix D: Pollutant Concentrations

Prin	hary NAAQS:		8-hour ave	erage not to ex	ceed 9 ppm mc	ore than on	ce per yea	r			
Seco	ondary NAAQ	S:	None								
Polli	utant:	Carbon N	Ionovide	Criteria Pol	lutant Summar	y Report - 2	016				
	a Interval:	Hourly	IONOXIGE				Un	its: Par	ts per mi	llion (pp	m)
	Site ID	City County Site Name Hours Max Measured 1 - Hour		our	Obs. ≥ 35	Max 8		Obs. <u>></u> 9			
1	130890002	Decatur	DeKalb	South DeKalb	7159	1 st 1.569	2 nd 1.558	0	1 st 1.4	2 nd 1.2	0
	131210056	Atlanta	Fulton	GA Tech	8500	8599 3.2 2.7 0 2.3 2.2					0

		National A	mbient Air Qualit	y Standards for I	Nitrogen L	loxide			
imary NAAQS:	А	nnual mean	must not exceed	l 53 ppb					
	3-		e of the 98 th perc eed 100 ppb	centile of daily m	naximum c	one-hour av	erages mu	ıst not	
condary NAAQS	5: A	nnual mean	must not exceed	53 ppb					
		c	riteria Pollutant S	Summary Report	: - 2016				
Pollutant: Nitrogen Dioxide Data Interval: Hourly Units: Parts per billion (ppb)									
				Hours Meas-					
Site ID	City	County	Site Name	Hours Meas-	98 th %	Max 1	Hour	Annual Arithmetic	
Site ID	City	County	Site Name	Hours Meas- ured	98 th %	Max 1 1 st	-Hour 2 nd	Annual Arithmetic Mean	
Site ID 130890002	City Decatur	County DeKalb	Site Name South DeKalb		98 th % 49.4			Arithmetic	
				ured		1 st	2 nd	Arithmetic Mean	

		I	Pollutant Summai	ry Report - 2016	i			
Pollutant: Data Interval:	NOx Hourly				Units:	Parts per bil	lion (nnh)	
	nouny				Units.		iioii (pps)	
Site ID	City	County	Site Name	Hours	Max 1	Max 1-Hour		
				Measured	1 st	2 nd	Mean	
130890002	Decatur	DeKalb	South DeKalb	8033	268.6	261.6	21.27	
130890003	Atlanta	DeKalb	DMRC	8568	414.4	405.2	41.28	
131210056	Atlanta	Fulton	GA Tech Near Road	8536	298.7	265.4	46.59	

			Pollutant Summa	ary Report - 2016			
Pollutant: Data Interval:	NOy Hourly				Uni	ts: Parts p	per billion (ppb)
Site ID	City	County	Site Name	Hours Meas- ured	Max 1 1 st	L-Hour 2 nd	Annual Arith- metic Mean
130890002	Decatur	DeKalb	South DeKalb	7985	202.0	200.0	20.88

Primary N/ Secondary		National Ambient Air Quality Standards for Ozone 3-year average of 4 th highest daily maximum 8-hr concentration not to exceed 0.070 ppm Same as the Primary Standards										
Criteria Pollutant Summary Report - 2016 Pollutant: Ozone Data Interval: Hourly Units: Parts per million (ppm) 8-Hour Averages												
Site ID	City	County	Site Name	Days Meas- ured	1 st Max	2 nd Max	3 rd Max	4 th Max	Number of Days >0.070			
130210012	Macon	Bibb	Macon- Forestry	241	0.079	0.077	0.074	0.070	3			
30510021	Savannah	Chatham	Savannah-E. Pres. St.	220	0.062	0.059	0.059	0.058	0			

Site ID	City	County	Site Name	Days Meas- ured	1 st Max	2 nd Max	3 rd Max	4 th Max	Number of Days >0.070
130210012	Macon	Bibb	Macon- Forestry	241	0.079	0.077	0.074	0.070	3
130510021	Savannah	Chatham	Savannah-E. Pres. St.	220	0.062	0.059	0.059	0.058	0
130550001	Summerville	Chattooga	Summerville	240	0.068	0.066	0.065	0.065	0
130590002	Athens	Clarke	Athens	244	0.071	0.069	0.069	0.069	1
130670003	Kennesaw	Cobb	Kennesaw	244	0.105	0.076	0.071	0.070	3
130730001	Evans	Columbia	Evans	241	0.068	0.066	0.065	0.062	0
130770002	Newnan	Coweta	Newnan	244	0.087	0.069	0.069	0.066	1
130850001	Dawsonville	Dawson	Dawsonville	240	0.078	0.076	0.069	0.067	2
130890002	Decatur	DeKalb	South DeKalb	233	0.083	0.082	0.078	0.074	7
130970004	Douglasville	Douglas	Douglasville	243	0.086	0.075	0.074	0.071	7
131210055	Atlanta	Fulton	Confederate Ave.	241	0.088	0.085	0.078	0.075	12
131270006	Brunswick	Glynn	Brunswick	224	0.064	0.060	0.059	0.057	0
131350002	Lawrenceville	Gwinnett	Gwinnett Tech	243	0.082	0.082	0.080	0.078	6
131510002	McDonough	Henry	McDonough	243	0.089	0.084	0.078	0.078	8
132130003	Chatsworth	Murray	Fort Mountain	241	0.074	0.069	0.068	0.067	1
132150008	Columbus	Muscogee	Columbus- Airport	237	0.075	0.068	0.065	0.065	1
132230003	Yorkville	Paulding	Yorkville	227	0.078	0.071	0.069	0.067	2
132319991	Williamson	Pike	CASTNET	234	0.078	0.075	0.074	0.071	4
132450091	Augusta	Richmond	Augusta	241	0.067	0.066	0.066	0.065	0
132470001	Conyers	Rockdale	Conyers	238	0.082	0.077	0.077	0.076	9
132611001	Leslie	Sumter	Leslie	243	0.071	0.067	0.066	0.065	1

		Criteria Po	ollutant Summary Report	- 2016		
Pollutant:	Ozone					
Data Interval:	Hourly			Units:	Parts per n	nillion (ppm)
			1-Hour Averages			
Site ID	City	County	Site Name	Days Meas- ured	1 st Max	2 nd Max
130210012	Macon	Bibb	Macon-Forestry	243	0.089	0.089
130510021	Savannah	Chatham	Savannah-E. Pres. St.	227	0.074	0.069
130550001	Summerville	Chattooga	Summerville	242	0.085	0.072
130590002	Athens	Clarke	Athens	245	0.086	0.079
130670003	Kennesaw	Cobb	Kennesaw	245	0.115	0.087
130730001	Evans	Columbia	Evans	241	0.075	0.073
130770002	Newnan	Coweta	Newnan	245	0.100	0.078
130850001	Dawsonville	Dawson	Dawsonville	244	0.090	0.082
130890002	Decatur	DeKalb	South DeKalb	234	0.105	0.097
130970004	Douglasville	Douglas	Douglasville	245	0.091	0.087
131210055	Atlanta	Fulton	Confederate Ave.	242	0.102	0.097
131270006	Brunswick	Glynn	Brunswick	227	0.071	0.069
131350002	Lawrenceville	Gwinnett	Gwinnett Tech	245	0.094	0.092
131510002	McDonough	Henry	McDonough	244	0.106	0.097
132130003	Chatsworth	Murray	Fort Mountain	243	0.086	0.072
132150008	Columbus	Muscogee	Columbus- Airport	237	0.083	0.076
132230003	Yorkville	Paulding	Yorkville	236	0.084	0.079
132319991	Williamson	Pike	CASTNET	236	0.085	0.082
132450091	Augusta	Richmond	Augusta	244	0.080	0.076
132470001	Conyers	Rockdale	Conyers	241	0.100	0.095
132611001	Leslie	Sumter	Leslie	245	0.075	0.074

National Ambient Air Quality Standards for Sulfur Dioxide

Primary NAAQS: Secondary NAAQS: 3-year average of 99th percentile of the daily maximum 1-hour concentration not to exceed 75 ppb

3-hour concentrations not to exceed 0.5 ppm (500 ppb) more than once per year

ollutant:	Sulfur Di	ovide	Cr	iteria Pollu	itant Sur	nmary K	eport - 2	1010					
ata Interval:	Hourly	UNICE					Ui	nits:	Parts pe	r billion	(ppb)		
Site ID	ID City County		County Site Name		Max 24 Hours Hour Meas-		- Max 3 - Hour		Max 1-Hour		99 th Pctl	Maxi- mum	Annual Arith- metic
Site ib	City	County	Site Name	ured	1 st	2 nd	1 st	2 nd	1 st	2 nd	1- Hr	5- Minute Average	Mean
130210012	Macon	Bibb	Macon- Forestry	8604	2.6	1.8	6.8	5.5	13.7	7.6	6.0	13.7	1.04
130510021	Savan- nah	Chat- ham	Savannah- E. Pres. St	8252	10.6	10.5	28.7	22.9	38.3	33.5	28.7	38.3	1.57
130511002	Savan- nah	Chat- ham	Savannah- L&A	8555	12.8	12.4	29.7	27.0	60.7	46.5	40.1	60.7	1.68
130890002	Decatur	DeKalb	South DeKalb	8293	2.4	1.5	8.0	6.5	32.2	31.9	31.6	32.2	0.24
131150003	Rome	Floyd	Rome	8667	14.8	7.7	41.3	37.7	78.7	73.1	48.7	78.7	1.61
131210055	Atlanta	Fulton	Confeder- ate Ave.	8500	4.2	3.3	9.9	8.7	38.2	13.2	6.3	38.2	1.04
132450091	Augusta	Rich- mond	Augusta	8590	12.0	9.7	38.5	35.3	89.5	78.3	58.0	89.5	1.79

	National Ambient Air Quality Standards for Particulate Matter $PM_{2.5}$
Primary NAAQS:	3-year average of the annual weighted mean not to exceed 12.0 μ g/m ³
	3-year average of the 98 th percentile of 24-hour concentration not to exceed 35 $\mu g/m^3$
Secondary NAAQS:	3-year average of the annual weighted mean not to exceed $15.0 \mu g/m^3$
	3-year average of the 98 th percentile of 24-hour concentration not to exceed 35 $\mu g/m^3$

Pollutant: Particulate Matter PM _{2.5}									
						,	(3)		
ata Interval:	24-Hour Units: Micrograms per cubic meter (μg/m ³)								
98 th % and Annual Arithmetic Mean									
Integrated Sampling (midnight to midnight) Using Federal Reference Method									
Site ID	City	County	Site Name	Days Meas- ured	98 th Percen- tile	Values Exceeding Applicable Daily Stand- ard	Annual Arith- metic Mean		
130210007	Macon	Bibb	Macon-Allied	287	21.2	1	9.73		
130210012	Macon	Bibb	Macon-Forestry	115	14.2	1	6.53		
130510091	Savannah	Chatham	Savannah- Mercer	116	24.5	1	8.33		
130590002	Athens	Clarke	Athens	117	14.8	1	8.33		
130630091	Forest Park	Clayton	Forest Park	120	17.3	1	9.28		
130670003	Kennesaw	Cobb	Kennesaw	303	18.2	1	9.26		
130890002	Decatur	DeKalb	South DeKalb	291	18.3	1	8.92		
130950007	Albany	Dougherty	Albany	294	20.4	0	8.62		
131150003	Rome	Floyd	Rome	298	18.4	0	9.43		
131210039	Atlanta	Fulton	Fire Station #8	122	19.9	1	9.92		
131210056	Atlanta	Fulton	GA Tech Near Road	122	24.2	1	10.76		
131270006	Brunswick	Glynn	Brunswick	121	34.2	2	7.86		

	National Ambient Air Quality Standards for Particulate Matter PM _{2.5}
Primary NAAQS:	3-year average of the annual weighted mean not to exceed 12.0 μ g/m ³
	3-year average of the 98 th percentile of 24-hour concentration not to exceed $35\mu g/m^3$
Secondary NAAQS:	3-year average of the annual weighted mean not to exceed $15.0\mu g/m^3$
	3-year average of the 98 th percentile of 24-hour concentration not to exceed $35\mu g/m^3$

Criteria Pollutant Summary Report - 2016									
Pollutant:	Parti	culate Matter F	PM _{2.5}						
Data Interval:	24-Hour				ograms per cub	ic meter (μg/m³)		
	98 th % and Annual Arithmetic Mean								
Integrated Sampling (midnight to midnight) Using Federal Reference Method									
Site ID	City	County	Site Name	Days Meas- ured	98 th Percentile	Values Exceeding Applicable Daily Stand- ard	Annual Arithmetic Mean		
131350002	Lawrenceville	Gwinnett	Gwinnett Tech	121	18.1	1	8.47		
131390003	Gainesville	Hall	Gainesville	119	23.3	2	8.50		
131530001	Warner Robins	Houston	Warner Robins	119	19.1	1	7.89		
131850003	Valdosta	Lowndes	Valdosta	117	17.1	0	7.26		
132150001	Columbus	Muscogee	Columbus- Health Dept.	117	18.0	1	9.10		
132150008	Columbus	Muscogee	Columbus Airport	121	16.5	0	8.68		
132150011	Columbus	Muscogee	Columbus- Cusseta	121	33.8	2	9.57		
132230003	Yorkville	Paulding	Yorkville	116	14.2	0	7.31		
132450091	Augusta	Richmond	Augusta	119	30.0	2	9.55		
132950002	Rossville	Walker	Rossville	115	16.9	1	9.21		
133030001	Sandersville	Washing- ton	Sandersville	119	25.0	1	8.08		
133190001	Gordon	Wilkinson	Gordon	117	20.1	2	9.52		

Pollutant Summary Report - 2016

Pollutant: Particulate Matter PM_{2.5}

Data Interval: 1-Hour

Micrograms per cubic meter ($\mu g/m^3$) Units:

Hourly Averages of Semi-Continuous Measurements

Site ID	City	County	Site Name	Hours Meas- ured	1ª Max	2 nd Max	Annual Arith- metic Mean
130210012	Macon	Bibb	Macon-Forestry	8579	115.6	114.7	7.38
130511002	Savannah	Chatham	Savannah-L&A	8367	154.1	113.7	8.3
130590002	Athens	Clarke	Athens	8597	177.0	172.2	7.79
130770002	Newnan	Coweta	Newnan	8611	139.4	110.6	7.56
130890002	Decatur	DeKalb	South DeKalb	6614	100.0	95.0	12.83
130950007	Albany	Dougherty	Albany	6345	82.0	68.0	9.11
131210055	Atlanta	Fulton	Confederate Avenue	8583	90.4	84.8	11.09
131350002	Lawrenceville	Gwinnett	Gwinnett Tech	8444	151.2	147.4	8.05
131510002	McDonough	Henry	McDonough	8669	96.5	84.1	7.62
131530001	Warner Robins	Houston	Warner Robins	8118	82.0	78.0	8.56
131850003	Valdosta	Lowndes	Valdosta	7745	90.0	87.0	8.63
132150008	Columbus	Muscogee	Columbus- Airport	8434	143.1	127.0	7.98
132230003	Yorkville	Paulding	Yorkville	8406	155.9	146.6	10.26
132450091	Augusta	Richmond	Augusta	8589	121.7	121.6	8.88
132950002	Rossville	Walker	Rossville	8181	161.0	151.0	10.4

National Ambient Air Quality Standards for Particulate Matter PM ₁₀									
Primary NAAQ	S:	Number of days with a maximum of 24-hour concentration of 150µg/m ³ must not exceed more than once per year on average over 3 years							
Secondary NAA	QS:	Same	as the P	Primary Standards					
			Cr	iteria P	ollutant Summ	ary Report - 20	16		
Pollutant:	Particu	late Matte	er PM ₁₀						
Data Interval:	24-Hou	r				Unit	s: Micro	grams per cubi	c meter (μg/m³)
				24-Ho	our Integrated N	Veasurements			
Site ID	City	c	ounty	S	ite Name	Days Meas- ured	1 st Max	Number Values <u>≥</u> 150	Annual Arithmetic Mean
131210039	Atlant	a F	ulton	Fire	e Station #8	60	68	0	15.8
132450091	Augus	ta Ric	hmond		Augusta	58	43	0	15.5
				Hourl	y Continuous N	Neasurements			
Site ID		City	Cou	inty Site Name Hours Measured 1 st Ma		1 st Max	Annual Arith- metic Mean		
130890002	C	ecatur	DeKalk)	South DeKal	b 86	87	212	17.2

National Ambient Air Quality Standards for Lead

Rolling 3-month average not to exceed 0.15 μ g/m³

Primary NAAQS: Secondary NAAQS:

Г

Same as the Primary Standard

Criteria Pollutant Summary Report - 2016									
Pollutant: Lead Data Interval: 24-Hour		Units:	Micrograms per cubic me	eter (μg/m³)					
Site ID	130890003	132150009	132150010	132150011					
City	Atlanta	Columbus	Columbus	Columbus					
County	DeKalb	Muscogee	Muscogee	Muscogee					
Site Name	DMRC	Columbus-UPS	Columbus-Ft. Benning	Columbus-Cusseta					
Number of Obs.	45	70	71	65					
Nov 2015-Jan 2016	0.0019	0.1431	0.0196	0.0039					
Dec 2015-Feb 2016	0.0023	0.1466	0.0148	0.0031					
Jan 2016-Mar 2016	0.0022	0.1451	0.0169	0.0020					
Feb 2016-Apr 2016	0.0022	0.0133	0.0219	0.0027					
Mar 2016-May 2016	0.0016	0.0154	0.0218	0.0039					
Apr 2016-Jun 2016	0.0016	0.0287	0.0176	0.0043					
May 2016-Jul 2016		0.0331	0.0107	0.0030					
Jun 2016-Aug 2016		0.0296	0.0429	0.0026					
Jul 2016-Sep 2016		0.0179	0.0477	0.0028					
Aug 2016-Oct 2016		0.0154	0.0539	0.0124					
Sep 2016-Nov 2016		0.3566	0.0334	0.0735					
Oct 2016-Dec 2016		0.3565	0.0261	0.0750					
# of Values <u>></u> 0.15	0	2	0	0					

PAMS Continuous Hydrocarbon Data (June-August 2016)									
	(co	oncentrations in pa	rts per billion Carbo	on (ppbC))					
Name	Site	#Samples	Avg.	1 st Max	2 nd Max				
PAMSHC	S. DeKalb	1937	39.87	205.8	178				
тлмос	S. DeKalb	1937	53.59	251.4	216.4				
Ethane	S. DeKalb	1939	4.191	38.29	28.83				
Ethylene	S. DeKalb	1939	1.502	10.62	8.68				
Propane	S. DeKalb	19.39	3.189	23.14	21.85				
Propylene	S. DeKalb	1939	0.842	4.54	4.32				
Acetylene	S. DeKalb	1939	0.520	7.30	5.7				
n-Butane	S. DeKalb	1939	1.408	16.13	8.26				
Isobutane	S. DeKalb	1939	0.662	8.41	7.88				
trans-2-Butene	S. DeKalb	1939	0.053	0.83	0.68				
cis-2-Butene	S. DeKalb	1939	0.045	2.74	0.82				
n-Pentane	S. DeKalb	1939	2.041	19.03	18.46				
Isopentane	S. DeKalb	1939	2.836	42.45	25.88				
1-Pentene	S. DeKalb	1939	0.081	0.99	0.51				
trans-2-Pentene	S. DeKalb	1939	0.078	1.09	0.99				
cis-2-Pentene	S. DeKalb	1939	0.034	0.52	0.44				
3-Methylpentane	S. DeKalb	1939	0.366	5.02	4.08				
n-Hexane	S. DeKalb	1940	0.527	7.36	3.89				
n-Heptane	S. DeKalb	1940	0.304	10.16	6.14				
n-Octane	S. DeKalb	1940	0.130	0.82	0.74				

ΡΑΝ	PAMS Continuous Hydrocarbon Data (June-August 2016)(continued)								
	(concentrations in ppbC)								
Name	Site	#Samples	Avg.	1 st Max	2 nd Max				
n-Nonane	S. DeKalb	1940	0.127	4.21	3.28				
n-Decane	S. DeKalb	1940	0.163	9.53	6.91				
Cyclopentane	S. DeKalb	1939	0.148	1.66	1.12				
Isoprene	S. DeKalb	1939	5.980	38.76	37.47				
2,2-Dimethylbutane	S. DeKalb	1939	0.048	0.55	0.4				
2,4-Dimethylpentane	S. DeKalb	1940	0.123	1.32	0.98				
Cyclohexane	S. DeKalb	1940	0.138	1.21	0.91				
3-Methylhexane	S. DeKalb	1940	0.438	9.73	4.76				
2,2,4-Trimethylpentane	S. DeKalb	1940	0.573	4.75	4.46				
2,3,4-Trimethylpentane	S. DeKalb	1940	0.169	1.60	1.29				
3-Methylheptane	S. DeKalb	1940	0.113	0.93	0.92				
Methylcyclohexane	S. DeKalb	1940	0.274	1.91	1.86				
Methylcyclopentane	S. DeKalb	1940	0.345	3.97	2.8				
2-Methylhexane	S. DeKalb	1940	0.305	5.53	3.08				
1-Butene	S. DeKalb	1939	0.269	0.96	0.9				
2,3-Dimethylbutane	S. DeKalb	1939	0.126	3.20	2.94				
2-Methylpentane	S. DeKalb	1939	0.464	6.41	4.42				
2,3-Dimethylpentane	S. DeKalb	1940	0.224	2.60	1.86				
n-Undecane	S. DeKalb	1940	0.189	6.36	5.05				
2-Methylheptane	S. DeKalb	1940	0.076	0.82	0.73				

PAMS (PAMS Continuous Hydrocarbon Data (June-August 2016) (continued)									
(concentrations in ppbC)										
Name	Name Site #Samples Avg. 1st Max 2nd Max									
m & p Xylenes	S. DeKalb	1940	1.037	40.61	20.91					
Benzene	S. DeKalb	1940	0.580	4.6	4.32					
Toluene	S. DeKalb	1940	2.170	94.67	54.44					
Ethylbenzene	S. DeKalb	1940	0.309	10.08	6.20					
o-Xylene	S. DeKalb	1940	0.414	10.00	5.54					
1,3,5-Trimethylbenzene	S. DeKalb	1940	0.201	5.46	2.81					
1,2,4-Trimethylbenzene	S. DeKalb	1940	0.486	16.16	7.36					
n-Propylbenzene	S. DeKalb	1940	0.076	3.87	2.17					
Isopropylbenzene	S. DeKalb	1940	0.030	0.71	0.44					
o-Ethyltoluene	S. DeKalb	1940	0.122	4.69	2.53					
m-Ethyltoluene	S. DeKalb	1940	1.751	12.09	10.07					
m-Diethylbenzene	S. DeKalb	1940	0.123	0.72	0.62					
p-Diethylbenzene	S. DeKalb	1940	0.119	1.61	1.41					
Styrene	S. DeKalb	1940	0.196	1.27	1.20					
1,2,3-Trimethylbenzene	S. DeKalb	1940	2.876	14.29	14.22					
p-Ethyltoluene	S. DeKalb	1940	0.296	8.01	6.23					

	PAMS 2016 24-hour Canister Hydrocarbons									
(concentrations in parts per billion Carbon (ppbC))										
Name	Site #Samples #Detects^ Avg.* 1 st Max 2 nd N									
РАМЅНС	S. DeKalb	61	61	51.28	150	110				
тлмос	S. DeKalb	61	61	124.61	250	250				
Ethane	S. DeKalb	61	57	6.25	18.0	13.0				
Ethylene	S. DeKalb	61	1	0.04	2.2					
Propane	S. DeKalb	61	58	4.07	11.0	9.1				
Propylene	S. DeKalb	61	49	0.60	3.2	1.5				
Acetylene	S. DeKalb	46	40	1.30	7.4	2.7				
n-Butane	S. DeKalb	61	42	3.63	20.0	13.0				
Isobutane	S. DeKalb	61	26	0.76	5.5	3.3				
trans-2-Butene	S. DeKalb	61	ND							
cis-2-Butene	S. DeKalb	61	ND							
n-Pentane	S. DeKalb	61	61	3.30	35.0	14.0				
Isopentane	S. DeKalb	61	57	3.78	11.0	9.8				
1-Pentene	S. DeKalb	61	22	0.11	0.6	0.5				

	PAMS 2016 24-hour Canister Hydrocarbons (continued)									
(concentrations in ppbC)										
Name	Site	#Samples	#Detects^	Avg.*	1 st Max	2 nd Max				
trans-2-Pentene	S. DeKalb	61	10	0.06	0.6	0.4				
cis-2-Pentene	S. DeKalb	61	4	0.02	0.4	0.2				
3-Methylpentane	S. DeKalb	61	58	0.87	2.1	1.9				
n-Hexane	S. DeKalb	61	58	1.40	12.0	9.3				
n-Heptane	S. DeKalb	61	42	0.38	1.3	1.2				
n-Octane	S. DeKalb	61	17	0.08	0.5	0.5				
n-Nonane	S. DeKalb	61	11	0.06	0.5	0.5				
n-Decane	S. DeKalb	61	13	0.07	0.5	0.5				
Cyclopentane	S. DeKalb	61	15	0.09	0.6	0.6				
Isoprene	S. DeKalb	61	36	4.16	15	15				
2,2-Dimethylbutane	S. DeKalb	61	19	0.12	0.6	0.6				
2,4-Dimethylpentane	S. DeKalb	61	13	0.08	0.7	0.4				
Cyclohexane	S. DeKalb	61	18	0.10	0.5	0.5				
3-Methylhexane	S. DeKalb	61	41	0.42	1.4	1.3				

	PAMS 2016	24-hour Caniste	er Hydrocarbons	s (continued)					
(concentrations in ppbC)									
Name	Site	#Samples	#Detects^	Avg.*	1 st Max	2 nd Max			
2,2,4-Trimethylpentane	S. DeKalb	61	56	1.62	4.3	3.0			
2,3,4-Trimethylpentane	S. DeKalb	61	21	0.14	0.7	0.7			
3-Methylheptane	S. DeKalb	61	10	0.04	0.5	0.4			
Methylcyclohexane	S. DeKalb	61	20	0.15	0.9	0.7			
Methylcyclopentane	S. DeKalb	61	44	0.53	3.0	3.0			
2-Methylhexane	S. DeKalb	61	37	0.32	1.1	1.0			
1-Butene	S. DeKalb	61	22	0.14	1.0	0.7			
2,3-Dimenthylbutane	S. DeKalb	61	23	0.19	0.9	0.8			
2-Methylpentane	S. DeKalb	61	56	1.07	3.6	3.5			
2,3-Dimethylpentane	S. DeKalb	61	30	0.23	0.9	0.8			
n-Undecane	S. DeKalb	61	22	0.10	0.5	0.4			
2-Methylheptane	S. DeKalb	61	8	0.04	0.4	0.4			
m & p Xylenes	S. DeKalb	61	58	1.34	3.8	3.7			
Benzene	S. DeKalb	61	61	1.19	4.2	3.8			

	PAMS 2016 24-HOUR Canister Hydrocarbons (continued)										
	(concentrations in ppbC)										
Name	Site	#Samples	#Detects^	Avg.*	1 st Max	2 nd Max					
Toluene	S. DeKalb	61	61	2.69	9.5	6.7					
Ethylbenzene	S. DeKalb	61	39	0.34	1.1	1.1					
o-Xylene	S. DeKalb	61	51	0.52	1.4	1.4					
1,3,5-Trimethylbenzene	S. DeKalb	61	14	0.11	1.4	0.6					
1,2,4-Trimethylbenzene	S. DeKalb	61	61	4.80	18.0	15.0					
n-Propylbenzene	S. DeKalb	61	4	0.02	0.3	0.3					
Isopropylbenzene	S. DeKalb	61	ND								
o-Ethyltoluene	S. DeKalb	61	32	0.24	0.9	0.8					
m-Ethyltoluene	S. DeKalb	61	34	0.30	1.1	1.0					
p-Ethyltoluene	S. DeKalb	61	43	0.36	1.0	0.9					
m-Diethylbenzene	S. DeKalb	61	4	0.02	0.6	0.4					
p-Diethylbenzene	S. DeKalb	61	7	0.04	0.5	0.4					
Styrene	S. DeKalb	61	50	0.41	1.1	0.9					
1,2,3-Trimethylbenzene	S. DeKalb	61	17	0.10	0.6	0.5					

			2016 Metals			
	(con	centrations in mi	crograms per cubi	c meter (μg/m³))		
Name	Site	#Samples	#Detects^	Avg.*	1 st Max	2 nd Max
	Macon-Forestry	29	29	0.00129	0.00945	0.00648
	Savannah-E. Pres. St.	30	30	0.00094	0.00190	0.00178
Antimony	General Coffee	28	27	0.00029	0.00063	0.04772
	Yorkville	29	29	0.00071	0.00202	0.00187
	South DeKalb**	61	61	0.00257	0.01264	0.00957
	Macon-Forestry	29	22	0.00059	0.00167	0.00142
	Savannah-E. Pres. St.	30	24	0.00048	0.00104	0.00094
Arsenic	General Coffee	28	15	0.00037	0.00093	0.00065
	Yorkville	29	24	0.00080	0.00246	0.00146
	South DeKalb**	61	49	0.00059	0.00161	0.00145
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	30	3	0.00003	0.00015	0.00007
-	General Coffee	28	ND			
	Yorkville	29	2	0.00003	0.00014	0.00004
	South DeKalb**	61	1	0.00003	0.00010	
	Macon-Forestry	29	27	0.00008	0.00016	0.00014
	Savannah-E. Pres. St.	30	30	0.00017	0.00036	0.00031
Cadmium	General Coffee	28	27	0.00007	0.00017	0.00016
	Yorkville	29	28	0.00008	0.00015	0.00014
	South DeKalb**	61	25	0.00009	0.00054	0.00049
	Macon-Forestry	29	29	0.00138	0.00263	0.00251
	Savannah-E. Pres. St.	30	30	0.00171	0.00378	0.00317
Chromium	General Coffee	28	28	0.00122	0.00214	0.00194
	Yorkville	29	29	0.00189	0.01051	0.00285
	South DeKalb**	61	61	0.00184	0.00390	0.00379
	Macon-Forestry	29	4	0.00011	0.00048	0.00031
	Savannah-E. Pres. St.	30	7	0.00012	0.00041	0.00021
Cobalt	General Coffee	28	ND			
	Yorkville	29	5	0.00009	0.00036	0.00021
	South DeKalb**	61	16	0.00008	0.00033	0.00020

		2016 Met	tals (continued)			
		(concentra	ations in µg/m³)			
Name	Site	#Samples	#Detects^	Avg.*	1 st Max	2 nd Max
	Macon-Forestry	29	29	0.00170	0.00396	0.00363
	Savannah-E. Pres. St.	30	30	0.00280	0.01551	0.00755
Lead	General Coffee	28	28	0.00094	0.00153	0.00143
	Yorkville	29	29	0.00157	0.00514	0.00283
	South DeKalb**	61	61	0.00192	0.00668	0.00433
	Macon-Forestry	29	29	0.00807	0.02059	0.01845
	Savannah-E. Pres. St.	30	30	0.00883	0.03441	0.03430
Manganese	General Coffee	28	28	0.00313	0.00736	0.00697
	Yorkville	29	29	0.00596	0.02756	0.01341
	South DeKalb**	61	61	0.00441	0.01820	0.01264
	Macon-Forestry	29	27	0.00049	0.00091	0.00085
	Savannah-E. Pres. St.	30	28	0.00080	0.00179	0.00165
Nickel	General Coffee	28	26	0.00082	0.00231	0.00179
	Yorkville	29	27	0.00053	0.00107	0.00083
	South DeKalb**	61	57	0.00057	0.00114	0.00110
	Macon-Forestry	29	21	0.00029	0.00095	0.00090
	Savannah-E. Pres. St.	30	18	0.00021	0.00074	0.00069
Selenium	General Coffee	28	11	0.00012	0.00041	0.00032
	Yorkville	29	15	0.00019	0.00078	0.00056
	South DeKalb**	61	14	0.00016	0.00137	0.00079
	Macon-Forestry	21	21	0.02693	0.13502	0.06352
	Savannah-E. Pres. St.	23	23	0.02462	0.08524	0.04772
Zinc	General Coffee	21	21	0.01991	0.06599	0.04225
	Yorkville	28	28	0.01368	0.02803	0.02121
	South DeKalb**	60	60	0.01642	0.04189	0.04145

	2016	Semi-Volatile	Compounds			
		oncentrations i				
Name	Site	#Samples	#Detects^	Avg.**	1 st Max	2 nd Max
	Macon-Forestry	22	22	0.00301	0.01330	0.00970
	Savannah-E. Pres. St.	21	21	0.00143	0.00509	0.00344
Acenaphthene	General Coffee	20	15	0.00039	0.00198	0.00173
	South DeKalb*	55	55	0.00170	0.00456	0.00416
	Yorkville	27	25	0.00091	0.00155	0.00095
	Macon-Forestry	20	3	0.00011	0.00025	0.00020
	Savannah-E. Pres. St.	21	2	0.00017	0.00210	0.00025
Acenaphthylene	General Coffee	20	2	0.00011	0.00035	0.00015
	South DeKalb*	55	10	0.00021	0.00104	0.00080
	Yorkville	27	2	0.00015	0.00018	0.00015
	Macon-Forestry	22	ND			
	Savannah-E. Pres. St.	21	1	0.00013	0.00090	
Anthracene	General Coffee	20	2	0.00011	0.00045	0.00391
	South DeKalb*	55	2	0.00019	0.00248	0.00082
	Yorkville	27	1	0.00014	0.00015	
	Macon-Forestry	22	ND			
	Savannah-E. Pres. St.	21	1	0.00011	0.00021	
Benzo(a)anthracene	General Coffee	21	ND			
	South DeKalb*	55	1	0.00015	0.00073	
	Yorkville	27	ND			
	Macon-Forestry	22	ND			
	Savannah-E. Pres. St.	21	1	0.00011	0.00021	
Benzo(a)pyrene	General Coffee	21	ND			
	South DeKalb*	55	2	0.00015	0.00085	0.00015
	Yorkville	27	ND			
	Macon-Forestry	22	ND			
	Savannah-E. Pres. St.	21	1	0.00011	0.00028	0.00015
Benzo(b)fluoranthene	General Coffee	21	ND			
	South DeKalb*	55	3	0.00015	0.00032	0.00015
	Yorkville	27	1	0.00014	0.00015	
	Macon-Forestry	22	ND			
	Savannah-E. Pres. St.	21	ND			
Benzo(e)pyrene	General Coffee	21	1	0.00011	0.00018	
	South DeKalb*	55	7	0.00016	0.00085	0.00021
	Yorkville	27	1	0.00014	0.00015	

	2016 Semi-Volat	ile Compound	ds (continued)		
		ntrations in µ		/		
Name	Site	#Samples	#Detects^	Avg.**	1 st Max	2 nd Max
	Macon-Forestry	21	ND			
	Savannah-E. Pres. St.	21	2	0.00011	0.00021	0.00015
Benzo(g,h,i)perylene	General Coffee	21	ND			
	South DeKalb*	55	10	0.00016	0.00091	0.00021
	Yorkville	27	1	0.00014	0.00015	
	Macon-Forestry	22	ND			
	Savannah-E. Pres. St.	21	ND			
Benzo(k)fluoranthene	General Coffee	21	1	0.00011	0.00019	
	South DeKalb*	55	3	0.00015	0.00047	0.00033
	Yorkville	27	1	0.00014	0.00016	
	Macon-Forestry	21	ND			
	Savannah-E. Pres. St.	21	2	0.00011	0.00020	0.00018
Chrysene	General Coffee	21	1	0.00013	0.00035	
	South DeKalb*	55	8	0.00017	0.00113	0.00030
	Yorkville	27	1	0.00014	0.00015	
	Macon-Forestry	22	ND			
	Savannah-E. Pres. St.	21	ND			
Dibenzo(a,h)anthracene	General Coffee	21	ND			
	South DeKalb*	55	ND			
	Yorkville	27	ND			
	Macon-Forestry	22	20	0.00085	0.00301	0.00213
	Savannah-E. Pres. St.	21	18	0.00049	0.00140	0.00136
Fluoranthene	General Coffee	20	14	0.00047	0.00218	0.00125
	South DeKalb*	55	55	0.00076	0.00197	0.00186
	Yorkville	27	19	0.00044	0.00058	0.00050
	Macon-Forestry	22	22	0.00225	0.00603	0.00570
	Savannah-E. Pres. St.	21	21	0.00132	0.00357	0.00209
Fluorene	General Coffee	20	17	0.00056	0.00231	0.00143
	South DeKalb*	55	55	0.00219	0.00619	0.00544
	Yorkville	27	24	0.00150	0.00225	0.00185
	Macon-Forestry	22	ND			
	Savannah-E. Pres. St.	21	2	0.00011	0.00018	0.00015
Indeno(1,2,3-cd)pyrene	General Coffee	21	1	0.00011	0.00021	
	South DeKalb*	55	6	0.00015	0.00085	0.00018
	Yorkville	27	1	0.00014	0.00015	0.00010
	TORATIC	-/	-	0.00014	0.00015	

	2016 Semi-Volatile Compounds (continued)									
(concentrations in μg/m³)										
Name	Site	#Samples	#Detects^	Avg.**	1 st Max	2 nd Max				
	Macon-Forestry	22	21	0.02190	0.05382	0.04517				
	Savannah-E. Pres. St.	21	21	0.01342	0.04760	0.02344				
Naphthalene	General Coffee	20	20	0.00772	0.06561	0.02103				
-	South DeKalb*	55	55	0.04823	0.12346	0.11569				
	Yorkville	27	27	0.01620	0.02960	0.01831				
	Macon-Forestry	22	22	0.00487	0.01623	0.01457				
	Savannah-E. Pres. St.	21	21	0.00239	0.00634	0.00568				
Phenanthrene	General Coffee	21	20	0.00138	0.00430	0.00391				
	South DeKalb*	55	55	0.00389	0.00909	0.00768				
	Yorkville	27	23	0.00252	0.00429	0.00283				
	Macon-Forestry	22	19	0.00032	0.00101	0.00068				
	Savannah-E. Pres. St.	21	16	0.00026	0.00123	0.00057				
Pyrene	General Coffee	21	12	0.00051	0.00261	0.00138				
	South DeKalb*	55	50	0.00039	0.00131	0.00055				
	Yorkville	27	9	0.00022	0.00032	0.00020				
Perylene	South DeKalb*	55	ND							

ND indicates no detection

^Detect is counted as any value above half method detection limit.

*Sample collected every 6 days.

**When a detected concentration is below one half of the method detection limit, then one half of the method detection level is used to calculate the average.

	201	6 Volatile Orga	nic Compounds	5		
		(concentration	ıs in μg/m³)			
Name	Site	#Samples	#Detects^	Avg.**	1 st Max	2 nd Max
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
	General Coffee	22	ND			
Freon 113	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
	General Coffee	22	ND			
Freon 114	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			
	Macon-Forestry	29	1	0.28956	0.37616	
	Savannah-E. Pres. St.	25	ND			
	General Coffee	22	ND			
1,3-Butadiene	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			
	Macon-Forestry	29	1	0.45185	0.61988	
	Savannah-E. Pres. St.	25	ND			
	General Coffee	22	ND			
Cyclohexane	South DeKalb*	60	1	0.44310	0.75763	
	DMRC	29	ND			
	Yorkville	28	1	6.84299	185.9632	
	Macon-Forestry	29	29	1.09219	1.32188	1.28057
	Savannah-E. Pres. St.	25	25	1.27740	2.16871	1.75562
	General Coffee	22	22	0.95366	1.63170	1.48711
Chloromethane	South DeKalb*	60	60	1.03358	1.28057	1.23926
	DMRC	29	29	1.06921	1.50777	1.25920
	Yorkville	28	28	1.05694	1.46646	1.23926
	Macon-Forestry	28	13	0.52026	1.28479	0.55558
	Savannah-E. Pres. St.	25	4	0.45609	0.48614	0.45141
				0.43003	0.40014	0.45141
Dichloromethane	General Coffee	22	ND			
	South DeKalb*	60	10	0.45517	0.65976	0.59031
	DMRC	29	8	0.46588	0.59031	0.55558
	Yorkville	28	3	0.45081	0.45141	0.43405

	2016 Volatile C	Organic Compo	ounds (continu	ed)		
	(con	centrations in	µg/m³)			
Name	Site	#Samples	#Detects^	Avg.**	1 st Max	2 nd Max
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
Ch la sa fa sua	General Coffee	22	ND			
Chloroform	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
	General Coffee	22	ND			
Carbon tetrachloride	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			
	Macon-Forestry	29	29	1.16947	1.40491	1.29252
	Savannah-E. Pres. St.	25	25	1.18012	1.40491	1.29252
T ::	General Coffee	22	22	1.03673	1.40491	1.23632
Trichlorofluoromethane	South DeKalb*	60	60	1.19183	1.5173	1.34871
	DMRC	29	29	1.16326	1.4611	1.34871
	Yorkville	28	28	1.15687	1.5173	1.34871
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
Chloroethane	General Coffee	22	ND			
Chloroethane	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
	General Coffee	22	ND			
1,1-Dichloroethane	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
	General Coffee	22	ND			
Methyl chloroform	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			

	2016 Volatile (Organic C <u>ompoun</u>	ds (continued)		2016 Volatile Organic Compounds (continued)								
		icentrations in μg/											
Name	Site	#Samples	#Detects^	Avg.**	1st Max	2nd Max							
	Macon-Forestry	29	ND										
	Savannah-E. Pres. St.	25	ND										
Ethedan a diabhaide	General Coffee	22	ND										
Ethylene dichloride	South DeKalb*	60	ND										
	DMRC	29	ND										
	Yorkville	28	ND										
	Macon-Forestry	29	ND										
	Savannah-E. Pres. St.	25	ND										
T aturatilana atlantana	General Coffee	22	ND										
Tetrachloroethylene	South DeKalb*	60	ND										
	DMRC	29	ND										
	Yorkville	28	ND										
	Macon-Forestry	29	ND										
	Savannah-E. Pres. St.	25	ND										
	General Coffee	22	ND										
1,1,2,2-Tetrachloroethane	South DeKalb*	60	ND										
	DMRC	29	ND										
	Yorkville	28	ND										
	Macon-Forestry	29	ND										
	Savannah-E. Pres. St.	25	3	0.58625	0.66853	0.62396							
	General Coffee	22	ND										
Bromomethane	South DeKalb*	60	ND										
	DMRC	29	ND										
	Yorkville	28	ND										
	Macon-Forestry	29	ND										
	Savannah-E. Pres. St.	25	ND										
	General Coffee	22	ND										
1,1,2-Trichloroethane	South DeKalb*	60	ND										
	DMRC	29	ND										
	Yorkville	28	ND										
	Macon-Forestry	29	29	1.99582	2.22515	1.58233							
	Savannah-E. Pres. St.	25	25	2.04448	2.3735	2.22515							
	General Coffee	22	22	1.66588	2.2746	2.17571							
Dichlorodifluoromethane	South DeKalb*	60	60	1.98904	2.3735	1.92847							
	DMRC	29	29	1.97627	2.3735	2.17571							
	Yorkville	28	28	1.95575	2.47239	2.32405							

	2016 Volatile Orga	anic Compoun	ds (continued))		
	(concen	trations in µg	/m³)			
Name	Site	#Samples	#Detects^	Avg.**	1 st Max	2 nd Max
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
Tricklana ethologia	General Coffee	22	ND			
Trichloroethylene	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
1,1-Dichloroethylene	General Coffee	22	ND			
1,1-Dicinoi de triyiene	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
1.2 Dicklovenvense	General Coffee	22	ND			
1,2-Dichloropropane	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
	General Coffee	22	ND			
trans-1,3-Dichloropropene	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
	General Coffee	22	ND			
cis-1,3-Dichloropropene	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
cic 1.2 Dichlaraathana	General Coffee	22	ND			
cis-1,2-Dichloroethene	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			

	2016 Volatile Or			d)		
		entrations in p	lg/m³)			
Name	Site	#Samples	#Detects^	Avg.**	1 st Max	2 nd Max
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
Ethylene dibromide	General Coffee	22	ND			
Linylene ubronnue	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
Hexachlorobutadiene	General Coffee	22	ND			
nexuciliorobutualene	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
Vinulablevide	General Coffee	22	ND			
Vinyl chloride	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
	General Coffee	22	ND			
m/p Xylene	South DeKalb*	60	11	0.56611	0.78184	0.5429
	DMRC	29	7	0.61389	1.04245	0.9555
	Yorkville	28	ND			
	Macon-Forestry	29	7	0.42242	0.54303	0.4472
	Savannah-E. Pres. St.	25	6	0.44781	0.92634	0.5430
_	General Coffee	22	2	0.41966	0.54303	0.3992
Benzene	South DeKalb*	60	32	0.59440	3.51370	0.5429
	DMRC	29	17	0.65483	2.01239	1.5013
	Yorkville	28	2	0.42076	0.54303	0.47914
	Macon-Forestry	29	12	0.59361	1.05472	0.9040
	Savannah-E. Pres. St.	25	7	0.53026	0.79104	0.7157
- /	General Coffee	22	ND			
Toluene	South DeKalb*	60	29	0.87203	4.52025	0.5429
	DMRC	29	18	0.87454	2.71215	2.0341
	Yorkville	28	ND			

	2016 Volatile	Organic Com	pounds (conti	inued)		
	(co	ncentrations	in μg/m³)			
Name	Site	#Samples	#Detects^	Avg.**	1 st Max	2 nd Max
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
Ethylbenzene	General Coffee	22	ND			
	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
	General Coffee	22	ND			
o- Xylene	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
	General Coffee	22	ND			
1,3,5-Trimethylbenzene	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
	General Coffee	22	ND			
1,2,4-Trimethylbenzene	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			
	Macon-Forestry	29	9	0.69878	1.49162	1.44900
	Savannah-E. Pres. St.	25	ND			
	General Coffee	22	ND			
Styrene	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			
	Macon-Forestry	29	ND			
	Savannah-E. Pres. St.	25	ND			
Benzene,1-ethenyl-4-	General Coffee	22	ND			
methyl	South DeKalb*	60	ND			
	DMRC	29	ND			
	Yorkville	28	ND			

	2016 Volatile Org	anic Compour	nds (continued	(k				
(concentrations in μg/m³)								
Name	Site	#Samples	#Detects^	Avg.**	1 st Max	2 nd Max		
	Macon-Forestry	29	ND					
	Savannah-E. Pres. St.	25	ND					
Chlorobenzene	General Coffee	22	ND					
Chiorobenzene	South DeKalb*	60	ND					
	DMRC	29	ND					
	Yorkville	28	ND					
	Macon-Forestry	29	ND					
	Savannah-E. Pres. St.	25	ND					
12 Dichlorohonzona	General Coffee	22	ND					
1,2-Dichlorobenzene	South DeKalb*	60	ND					
	DMRC	29	ND					
	Yorkville	28	ND					
	Macon-Forestry	29	ND					
	Savannah-E. Pres. St.	25	ND					
	General Coffee	22	ND					
1,3-Dichlorobenzene	South DeKalb*	60	ND					
	DMRC	29	ND					
	Yorkville	28	ND					
	Macon-Forestry	29	ND					
1,4-Dichlorobenzene	Savannah-E. Pres. St.	25	ND					
	General Coffee	22	ND					
	South DeKalb*	60	ND					
	DMRC	29	ND					
	Yorkville	28	ND					
Benzyl chloride	Macon-Forestry	29	ND					
	Savannah-E. Pres. St.	25	ND					
	General Coffee	22	ND					
	South DeKalb*	60	ND					
	DMRC	29	ND					
	Yorkville	28	ND					
	Macon-Forestry	29	ND					
	Savannah-E. Pres. St.	25	ND					
1,2,4-Trichlorobenzene	General Coffee	22	ND					
	South DeKalb*	60	ND					
	DMRC	29	ND					
	Yorkville	28	ND					

ND indicates no detection

^Detect is counted as any value above half method detection limit.

*Sample collected every 6 days

**When a detected concentration is below one half of the method detection limit, then one half of the method detection level is used to calculate the average.

2016 Black Carbon								
(concentrations in micrograms per cubic meter)								
Site ID	City	City County	Site Name	Hours	Annual	10 00	2 nd Max	
	City			Measured	Mean	1 ^₅ Max		
130890002	Decatur	DeKalb	South DeKalb	5765	1.095	7.90	5.88	
130890003	Decatur	DeKalb	DMRC	8756	1.604	34.64	23.76	
131210056	Atlanta	Fulton	GA Tech NR	8745	1.902	11.73	9.13	

2016 Carbonyl Compounds, 24-hour								
(concentrations in micrograms per cubic meter)								
Name	Site	#Samples	#Detects^	Avg.**	1 st Max	2 nd Max		
Formaldehyde	Savannah-E. Pres. St.	30	30	3.53751	38.57062	5.30051		
	Yorkville	30	28	4.35711	29.08587	10.38422		
	South DeKalb*	26	26	1.46554	4.29000	3.87000		
	Savannah-E. Pres. St.	30	23	1.60942	20.41974	2.31665		
Acetaldehyde	Yorkville	30	28	2.01350	18.00554	6.92281		
	South DeKalb*	27	27	1.09107	2.97000	2.77000		
	Savannah-E. Pres. St.	30	1	0.63719	2.89280			
Propionaldehyde	Yorkville	30	3	0.76155	5.19391	1.79993		
	South DeKalb*	27	4	0.82479	6.64000	5.25000		
	Savannah-E. Pres. St.	30	1	0.68476	4.36756			
Butyraldehyde	Yorkville	30	3	0.70084	3.73961	1.45379		
	South DeKalb*	27	1	0.56266	0.60000			
	Savannah-E. Pres. St.	30	25	2.81264	7.34546	5.67215		
Acetone	Yorkville	30	26	1.96488	5.67749	5.54017		
	South DeKalb*	27	20	1.06631	4.29000	4.15000		
	Savannah-E. Pres. St.	30	ND					
Benzaldehyde	Yorkville	30	1	0.56200	2.14681			
	South DeKalb*	26	ND					
	Savannah-E. Pres. St.	25	7	0.33182	0.59656	0.45890		
Acrolein (with canister method)	Yorkville	28	15	0.35802	0.94074	0.48184		
	DMRC	29	12	0.33614	0.61951	0.43595		
	Macon	29	23	0.68320	1.44552	0.48184		
	General Coffee	22	13	0.33428	0.48184	0.45890		
	South DeKalb*	60	20	0.32027	0.66540	0.45890		

ND indicates no detection

^Detect is counted as any value above half method detection limit.

* Sample collected every 6 days

** When a detected concentration is below one half of the method detection limit, then one half of the method detection level is used to calculate the average.